Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-31T23:31:09.223Z Has data issue: false hasContentIssue false

A correlation between star formation rate and average black hole accretion rate in star forming galaxies

Published online by Cambridge University Press:  25 July 2014

Chien-Ting J. Chen
Affiliation:
Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755, USA email: ctchen@dartmouth.edu
Ryan C. Hickox
Affiliation:
Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755, USA email: ctchen@dartmouth.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the results of recent studies on the co-evolution of galaxies and the supermassive black holes (SMBHs) using Herschel far-infrared and Chandra X-ray observations in the Boötes survey region. For a sample of star-forming (SF) galaxies, we find a strong correlation between galactic star formation rate and the average SMBH accretion rate in SF galaxies. Recent studies have shown that star formation and AGN accretion are only weakly correlated for individual AGN, but this may be due to the short variability timescale of AGN relative to star formation. Averaging over the full AGN population yields a strong linear correlation between accretion and star formation, consistent with a simple picture in which the growth of SMBHs and their host galaxies are closely linked over galaxy evolution time scales.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Alexander, D. M. & Hickox, R. C. 2012, New Astronomy Reviews, 56, 93CrossRefGoogle Scholar
Ashby, M. L. N., Stern, D., Brodwin, M., et al. 2009, ApJ, 701, 428Google Scholar
Brodwin, M., Brown, M. J. I., Ashby, M. L. N., et al. 2006, ApJ, 651, 791Google Scholar
Chen, C.-T. J., Hickox, R. C., Alberts, S., et al. 2013, ApJ, 773, 3Google Scholar
Eisenhardt, P. R., Stern, D., Brodwin, M., et al. 2004, ApJS, 154, 48Google Scholar
Harrison, C. M., Alexander, D. M., Mullaney, J. R., et al. 2012, ApJ, 760, L15CrossRefGoogle Scholar
Hickox, R. C., Jones, C., Forman, W. R., et al. 2007, ApJ, 671, 1365Google Scholar
Hickox, R. C., Mullaney, J. R., Alexander, D. M., et al. 2013, ApJ submitted (arXiv:1306.3218)Google Scholar
Jannuzi, B. T. & Dey, A. 1999, in ASP Conf. Ser. 191: Photometric Redshifts and the Detection of High Redshift Galaxies, ed. Weymann, R., Storrie-Lombardi, L., Sawicki, M., & Brunner, R. (San Francisco: ASP), 111Google Scholar
Kirkpatrick, A., Pope, A., Alexander, D. M., et al. 2012, ApJ, 759, 139Google Scholar
Kochanek, C. S., Eisenstein, D. J., Cool, R. J., et al. 2012, ApJs, 200, 8Google Scholar
Lutz, D., Sturm, E., Tacconi, L. J., et al. 2008, ApJ, 684, 853Google Scholar
Mullaney, J. R., Pannella, M., Daddi, E., et al. 2012a, MNRAS, 419, 95Google Scholar
Murray, S. S., Kenter, A., Forman, W. R., et al. 2005, ApJs, 161, 1Google Scholar
Oliver, S. J., Bock, J., Altieri, B., et al. 2012, MNRAS, 23Google Scholar
Page, M. J., Symeonidis, M., Vieira, J. D., et al. 2012, Nature, 485, 213Google Scholar
Rafferty, D. A., Brandt, W. N., Alexander, D. M., et al. 2011, ApJ, 742, 3Google Scholar
Rosario, D., Santini, P., Lutz, D., et al. 2012, A&A, 545, A45Google Scholar
Rovilos, E., Comastri, A., Gilli, R., et al. 2012, A&A, 546, A58Google Scholar
Serjeant, S. & Hatziminaoglou, E. 2009, MNRAS, 397, 265Google Scholar
Serjeant, S., Bertoldi, F., Blain, A. W., et al. 2010, A&A, 518, L7Google Scholar
Shao, L., Lutz, D., Nordon, R., et al. 2010, A&A 518 L26+Google Scholar
Stern, D., Eisenhardt, P., Gorjian, V., et al. 2005, ApJ, 631, 163Google Scholar
Symeonidis, M., Georgakakis, A., Seymour, N., et al. 2011, MNRAS, 417, 2239Google Scholar
Vasudevan, R. V. & Fabian, A. C. 2007, MNRAS, 381, 1235Google Scholar