Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T22:22:15.613Z Has data issue: false hasContentIssue false

Conversion of gas into stars in the Galactic center

Published online by Cambridge University Press:  22 May 2014

S. N. Longmore*
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park 146 Brownlow Hill, Liverpool L3 5RFUnited Kingdom. email: s.n.longmore@ljmu.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The star formation rate in the central 500 pc of the Milky Way is lower by a factor of > 10 than expected for the substantial amount of dense gas it contains, which challenges current star formation theories. I discuss which physical mechanisms could be causing this observation and put forward a self-consistent cycle of star formation in the Galactic center, in which the plausible star formation inhibitors are combined. Their ubiquity suggests that the perception of a lowered central SFR should be a common phenomenon in other galaxies with direct implications for galactic star formation and also potentially supermassive black hole growth. I then describe a scenario to explain the presence of super star clusters in the Galactic center environment, in which their formation is triggered by gas streams passing close to the minimum of the global Galactic gravitational potential at the location of the central supermassive black hole, Sgr A*. If this triggering mechanism can be verified, we can use the known time interval since closest approach to Sgr A* to study the physics of stellar mass assembly in an extreme environment as a function of absolute time. I outline the first results from detailed numerical simulations testing this scenario. Finally, I describe a study showing that in terms of the baryonic composition, kinematics, and densities, the gas in the Galactic center is indistinguishable from high-redshift clouds and galaxies. As such, the Galactic center clouds may be used as a template to understand the evolution (and possibly the life cycle) of high-redshift clouds and galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Bigiel, F., Leroy, A., Walter, F., Brinks, E., de Blok, W. J. G., Madore, B., & Thornley, M. D. 2008 AJ 136, 2846Google Scholar
Bigiel, F., et al. 2011, AJ, 730, L13Google Scholar
Bressert, E., Ginsburg, A., Bally, J., Battersby, C., Longmore, S., & Testi, L. 2012, ApJ 758, 28CrossRefGoogle Scholar
Burkert, A. & Hartman, L. 2013, ApJ 773, 48CrossRefGoogle Scholar
Elmegreen, B. G. 1987, ApJ 312, 626CrossRefGoogle Scholar
Gutermuth, R. A., Pipher, J. L., Megeath, S. T., Myers, P. C., Allen, L. E., & Allen, T. S. 2011, ApJ 739, 84CrossRefGoogle Scholar
Heiderman, A., Evans, N. J. II, Allen, L. E., Huard, T., & Heyer, M. 2010, ApJ 723, 1019CrossRefGoogle Scholar
Herrnstein, R. M. & Ho, P. T. P. 2005, ApJ 620, 287Google Scholar
Immer, K., Schuller, F., Omont, A., & Menten, K. M. 2012, A&A 537, 121Google Scholar
Immer, K., Menten, K. M., Schuller, F., & Lis, D. C. 2012, A&A 548, 120Google Scholar
Kennicutt, R. C. Jr. 1998a, ARA&A 36, 189Google Scholar
Kennicutt, R. C. Jr. 1998b, ApJ 498, 541CrossRefGoogle Scholar
Krumholz, M. R., Dekel, A., & McKee, C. F. 2012, ApJ 745, 69CrossRefGoogle Scholar
Kruijssen, J. M. D., Longmore, S. N., Elmegreen, B. G., Murray, N., Bally, J., Testi, L., & Kennicutt, R. C. Jr. 2013, submitted MNRAS arXiv:1303.6286Google Scholar
Kruijssen, J. M. D. & Longmore, S. N. 2013, MNRAS 435, 2598CrossRefGoogle Scholar
Lada, C. J., Lombardi, M., & Alves, J. F. 2010, ApJ 724, 687CrossRefGoogle Scholar
Lada, C. J., Forbrich, J., Lombardi, M., & Alves, J. F. 2012, ApJ 745, 190Google Scholar
Leroy, A. K., Walter, F., Brinks, E., Bigiel, F., de Blok, W. J. G., Madore, B., & Thornley, M. D. 2008 AJ 136, 2782CrossRefGoogle Scholar
Longmore, S. N., et al. 2012, ApJ 746, 117CrossRefGoogle Scholar
Longmore, S. N., et al. 2013a, MNRAS 429, 987CrossRefGoogle Scholar
Longmore, S. N., et al. 2013b, MNRAS 433, 15Google Scholar
Mac Low, M.-M. & Klessen, R. S. 2004, Reviews of Modern Physics 76, 125CrossRefGoogle Scholar
Molinari, S., et al. 2011, ApJ 735, L33Google Scholar
Montenegro, L. E., Yuan, C., & Elmegreen, B. G. 1999, ApJ 520, 592CrossRefGoogle Scholar
Schmidt, M. 1959, ApJ 129, 243CrossRefGoogle Scholar
Silk, J. 1997, ApJ 481, 703CrossRefGoogle Scholar
Yusef-Zadeh, F., et al. 2009, ApJ 702, 178CrossRefGoogle Scholar