Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-04-30T15:52:41.097Z Has data issue: false hasContentIssue false

The Neurological Predictor Scale Predicts Adaptive Functioning via Executive Dysfunction in Young Adult Survivors of Childhood Brain Tumor

Published online by Cambridge University Press:  09 July 2020

Rella J. Kautiainen
Affiliation:
Department of Psychology, Georgia State University, Atlanta, GA30303, USA
Michelle E. Fox
Affiliation:
Department of Psychology, Georgia State University, Atlanta, GA30303, USA
Tricia Z. King*
Affiliation:
Department of Psychology, Neuroscience Institute, Georgia State University, Atlanta, GA30303, USA
*
*Correspondence and reprint requests to: Dr. Tricia Z. King, Department of Psychology, Georgia State University, Atlanta, GA30303, USA. E-mail: tzking@gsu.edu

Abstract

Objectives:

Survivors of childhood brain tumors experience neurological sequelae that disrupt everyday adaptive functioning (AF) skills. The Neurological Predictor Scale (NPS), a cumulative measure of tumor treatments and sequelae, predicts cognitive outcomes, but findings on its relation to informant-reported executive dysfunction (ED) and AF are mixed. Given known effects of frontal-subcortical system disruptions on AF, this study assessed the NPS’ relationship with AF as mediated by frontal systems dysfunction, measured by the Frontal Systems Behavior Scale (FrSBe).

Methods:

75 participants (Mage = 23.5, SDage = 4.5) were young adult survivors of childhood brain tumors at least 5 years past diagnosis. FrSBe and Scales of Independent Behavior-Revised (SIB-R), a measure of AF, were administered to informants. Parallel multiple mediator models included Apathy and ED as mediators, and age at diagnosis and time between diagnosis and assessment as covariates.

Results:

More complex treatment and sequelae were correlated with poorer functioning. Mediation models were significant for all subscales: Motor Skills (MS), p = .0001; Social Communication (SC), p = .002; Personal Living (PL), p = .004; Community Living (CL), p = .007. The indirect effect of ED on SC and CL was significant; the indirect effect of Apathy was not significant for any subscales.

Conclusions:

More complex tumor treatment and sequelae were associated with poorer long-term AF via increased ED. Cognitive rehabilitation programs may focus on the role of executive function and initiation that contribute to AF, particularly SC and CL skills, to help survivors achieve comparable levels of independence in everyday function as their peers.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ailion, A.S., King, T.Z., Roberts, S.R., Tang, B., Turner, J.A., Conway, C.M., & Crosson, B. (2020). Double dissociation of auditory and visual attention in survivors of childhood cerebellar tumor: A tractography study of the cerebellar-frontal and the superior longitudinal fasciculus pathways. Journal of the International Neuropsychological Society, 115. Advance online publication. doi: 10.1017/S1355617720000417 Google ScholarPubMed
Ailion, A.S., Roberts, S.R., Crosson, B., & King, T.Z. (2019). Neuroimaging of the component white matter connections and structures within the cerebellar-frontal pathway in posterior fossa tumor survivors. Neuroimage Clinical, 23, 101894. doi: 10.1016/j.nicl.2019.101894 CrossRefGoogle ScholarPubMed
Ashford, J.M., Netson, K.L., Clark, K.N., Merchant, T.E., Santana, V.M., Wu, S., & Conklin, H.M. (2014). Adaptive functioning of childhood brain tumor survivors following conformal radiation therapy. Journal of Neuro-Oncology, 118(1), 193199.CrossRefGoogle ScholarPubMed
Brinkman, T.M., Reddick, W.E., Luxton, J., Glass, J.O., Sabin, N.D., Srivastava, D.K., … Krull, K.R. (2012). Cerebral white matter integrity and executive function in adult survivors of childhood medulloblastoma. Neuro-Oncology, 14(Suppl_4), iv25iv36.10.1093/neuonc/nos214CrossRefGoogle ScholarPubMed
Bruininks, R.H., Woodcock, R.W.B.K., Weatherman, R.F., & Hill, B.K. (1996). Scales of Independent Behavior-Revised (SIB-R). Itasca, IL: Riverside Publishing Company.Google Scholar
Cabrera, S., Edelstein, K., Mason, W.P., & Tartaglia, M.C. (2015). Assessing behavioral syndromes in patients with brain tumors using the Frontal Systems Behavior Scale (FrSBe). Neuro-Oncology Practice, 3(2), 113119.CrossRefGoogle Scholar
Carroll, C., Watson, P., Spoudeas, H.A., Hawkins, M.M., Walker, D.A., Clare, I.C., … Ring, H.A. (2013). Prevalence, associations, and predictors of apathy in adult survivors of infantile (<5 years of age) posterior fossa brain tumors. Neuro-Oncology, 15(4), 497505.10.1093/neuonc/nos320CrossRefGoogle ScholarPubMed
Carvalho, J.O., Buelow, M.T., Ready, R.E., & Grace, J. (2016). Associations between original and a reduced Frontal Systems Behavior Scale (FrSBe), cognition, and activities of daily living in a large neurologic sample. Applied Neuropsychology: Adult, 23(2), 125132.10.1080/23279095.2015.1012759CrossRefGoogle Scholar
Cummings, J.L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50(8), 873880.CrossRefGoogle ScholarPubMed
Denckla, M.B. (1994). Measurement of executive function. In Lyon, G.R. (Ed.), Frames of reference for the assessment of learning disabilities: New views on measurement issues, (pp. 117142). Baltimore: Paul H. Brookes.Google Scholar
Eccles, J.S. & Roeser, R.W. (2009). Schools, academic motivation, and stage-environment fit. In R.M., Lerner & L., Steinberg (Eds.), Handbook of Adolescent Psychology, (pp. 125–153). Hoboken, NJ: Wiley. http://doi.wiley.com/10.1002/9780470479193.adlpsy001013 CrossRefGoogle Scholar
Ellenberg, L., Liu, Q., Gioia, G., Yasui, Y., Packer, R.J., Mertens, A., … Robison, L.L. (2009). Neurocognitive status in long-term survivors of childhood CNS malignancies: A report from the Childhood Cancer Survivor Study. Neuropsychology, 23(6), 705 10.1037/a0016674CrossRefGoogle ScholarPubMed
Fox, M.E. & King, T.Z. (2016). Pituitary disorders as a predictor of apathy and executive dysfunction in adult survivors of childhood brain tumors. Pediatric Blood & Cancer, 63(11), 20192025.10.1002/pbc.26144CrossRefGoogle ScholarPubMed
Grace, J. & Malloy, P.F. (2001). Frontal Systems Behavior Scale (FrSBe). Lutz, FL: Psychological Assessment Resources.Google Scholar
Grace, J., Stout, J.C., & Malloy, P.F. (1999). Assessing frontal lobe behavioral syndromes with the frontal lobe personality scale. Assessment, 6(3), 269284.CrossRefGoogle ScholarPubMed
Gregg, N., Arber, A., Ashkan, K., Brazil, L., Bhangoo, R., Beaney, R., … Yágüez, L. (2014). Neurobehavioural changes in patients following brain tumour: Patients and relatives perspective. Supportive Care in Cancer, 22(11), 29652972.10.1007/s00520-014-2291-3CrossRefGoogle ScholarPubMed
Hartman, E., Houwen, S., Scherder, E., & Visscher, C. (2010). On the relationship between motor performance and executive functioning in children with intellectual disabilities. Journal of Intellectual Disability Research, 54(5), 468477.CrossRefGoogle ScholarPubMed
Hayes, A. (2014). The PROCESS Macro for SPSS and SAS. http://www.processmacro. org/ (accessed 8.19.19)Google Scholar
Hobbie, W.L., Ogle, S., Reilly, M., Barakat, L., Lucas, M.S., Ginsberg, J.P., … Deatrick, J. A. (2016). Adolescent and young adult survivors of childhood brain tumors: Life after treatment in their own words. Cancer Nursing, 39(2), 134.CrossRefGoogle Scholar
Hollingshead, A.B. (1970). Commentary on the indiscriminate state of social class measurement. Society Flow, 49, 563.Google Scholar
Hoskinson, K.R., Wolfe, K.R., Yeates, K.O., Mahone, E.M., Cecil, K.M., & Ris, M.D. (2018). Predicting changes in adaptive functioning and behavioral adjustment following treatment for a pediatric brain tumor: A report from the brain radiation investigative study consortium. Psycho-Oncology, 27(1), 178186.10.1002/pon.4394CrossRefGoogle ScholarPubMed
IBM Corp. (2017). IBM SPSS statistics for windows, version 25.0. Armonk, NY: IBM Corp.Google Scholar
Kautiainen, R.J., Na, S.D., & King, T.Z. (2019). Neurological predictor scale is associated with academic achievement outcomes in long-term survivors of childhood brain tumors. Journal of Neuro-Oncology, 142(1), 193201.10.1007/s11060-018-03084-wCrossRefGoogle ScholarPubMed
King, T.Z. & Na, S. (2016). Cumulative neurological factors associated with long-term outcomes in adult survivors of childhood brain tumors. Child Neuropsychology, 22(6), 748760.CrossRefGoogle ScholarPubMed
King, T.Z., Smith, K.M., & Ivanisevic, M. (2015). The mediating role of visuospatial planning skills on adaptive function among young–adult survivors of childhood brain tumor. Archives of Clinical Neuropsychology, 30(5), 394403.CrossRefGoogle ScholarPubMed
King, T.Z., Wang, L., & Mao, H. (2015). Disruption of white matter integrity in adult survivors of childhood brain tumors: Correlates with long-term intellectual outcomes. PloS One, 10(7), e0131744.CrossRefGoogle ScholarPubMed
Law, N., Smith, M.L., Greenberg, M., Bouffet, E., Taylor, M.D., Laughlin, S., … Mabbott, D. (2017). Executive function in paediatric medulloblastoma: The role of cerebrocerebellar connections. Journal of Neuropsychology, 11(2), 174200. doi: 10.1111/jnp.12082 CrossRefGoogle ScholarPubMed
Le Heron, C., Holroyd, C.B., Salamone, J., & Husain, M. (2019). Brain mechanisms underlying apathy. Journal of Neurology Neurosurgery Psychiatry, 90(3), 302312.CrossRefGoogle ScholarPubMed
Levy, R. & Dubois, B. (2006). Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cerebral Cortex, 16(7), 916928. doi: 10.1093/cercor/bhj043 CrossRefGoogle ScholarPubMed
Luna, B., Thulborn, K.R., Munoz, D.P., Merriam, E.P., Garver, K.E., Minshew, N.J., … Sweeney, J.A. (2001). Maturation of widely distributed brain function subserves cognitive development. Neuroimage, 13(5), 786793.10.1006/nimg.2000.0743CrossRefGoogle ScholarPubMed
Malloy, P. & Grace, J. (2005). A review of rating scales for measuring behavior change due to frontal systems damage. Cognitive and Behavioral Neurology, 18(1), 1827.CrossRefGoogle ScholarPubMed
Marin, R. (1996). Apathy: Concept, syndrome, neural mechanisms, and treatment. Seminars in Clinical Neuropsychiatry, 1(4), 304314. doi: 10.1053/scnp00100304 Google ScholarPubMed
Masterman, D.L. & Cummings, J.L. (1997). Frontal-subcortical circuits: The anatomic basis of executive, social and motivated behaviors. Journal of Psychopharmacology, 11(2), 107114.CrossRefGoogle ScholarPubMed
McCurdy, M.D., Rane, S., Daly, B.P., & Jacobson, L.A. (2016). Associations among treatment-related neurological risk factors and neuropsychological functioning in survivors of childhood brain tumor. Journal of Neuro-Oncology, 127(1), 137144.CrossRefGoogle ScholarPubMed
McPherson, S., Fairbanks, L., Tiken, S., Cummings, J.L., & Back-Madruga, C. (2002). Apathy and executive function in Alzheimer’s disease. Journal of the International Neuropsychological Society, 8(3), 373381.CrossRefGoogle ScholarPubMed
Micklewright, J.L., King, T.Z., Morris, R.D., & Krawiecki, N. (2008). Quantifying pediatric neuro-oncology risk factors: Development of the neurological predictor scale. Journal of Child Neurology, 23(4), 455458.10.1177/0883073807309241CrossRefGoogle ScholarPubMed
Middleton, H.A., Keene, R.G., & Brown, G.W. (1990). Convergent and discriminant validities of the Scales of Independent Behavior and the revised Vineland Adaptive Behavior scales. American Journal on Mental Retardation, 94(6), 669673.Google Scholar
Moretti, R. & Signori, R. (2016). Neural correlates for apathy: Frontal-prefrontal and parietal cortical-subcortical circuits. Frontiers in Aging Neuroscience, 8, 289.CrossRefGoogle ScholarPubMed
Mulhern, R.K., Merchant, T.E., Gajjar, A., Reddick, W.E., & Kun, L.E. (2004). Late neurocognitive sequelae in survivors of brain tumours in childhood. The Lancet Oncology, 5(7), 399408.CrossRefGoogle ScholarPubMed
Murdaugh, D.L., King, T.Z., & O’toole, K. (2019). The efficacy of a pilot pediatric cognitive remediation summer program to prepare for transition of care. Child Neuropsychology, 25(2), 131151.CrossRefGoogle ScholarPubMed
Na, S., Li, L., Crosson, B., Dotson, V., MacDonald, T.J., Mao, H., & King, T.Z. (2018). White matter network topology relates to cognitive flexibility and cumulative neurological risk in adult survivors of pediatric brain tumors. NeuroImage: Clinical, 20, 485497.10.1016/j.nicl.2018.08.015CrossRefGoogle ScholarPubMed
Ness, K.K., Morris, E.B., Nolan, V.G., Howell, C.R., Gilchrist, L.S., Stovall, M., … Neglia, J.P. (2010). Physical performance limitations among adult survivors of childhood brain tumors. Cancer, 116(12), 30343044.CrossRefGoogle ScholarPubMed
Netson, K.L., Conklin, H.M., Wu, S., Xiong, X., & Merchant, T.E. (2013). Longitudinal investigation of adaptive functioning following conformal irradiation for pediatric craniopharyngioma and low-grade glioma. International Journal of Radiation Oncology* Biology* Physics, 85(5), 13011306.10.1016/j.ijrobp.2012.10.031CrossRefGoogle ScholarPubMed
Ostrom, Q.T., Gittleman, H., Liao, P., Vecchione-Koval, T., Wolinsky, Y., Kruchko, C., & Barnholtz-Sloan, J.S. (2017). CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro-Oncology, 19(Suppl_5), v1v88.10.1093/neuonc/nox158CrossRefGoogle ScholarPubMed
Papazoglou, A., King, T.Z., Morris, R.D., & Krawiecki, N.S. (2008). Cognitive predictors of adaptive functioning vary according to pediatric brain tumor location. Developmental Neuropsychology, 33(4), 505520.10.1080/87565640802101490CrossRefGoogle ScholarPubMed
Puhr, A., Ruud, E., Anderson, V., Due-Tønnessen, B.J., Skarbø, A.B., Finset, A., & Andersson, S. (2019). Social attainment in physically well-functioning long-term survivors of pediatric brain tumour; the role of executive dysfunction, fatigue, and psychological and emotional symptoms. Neuropsychological rehabilitation, 125. doi: 10.1080/09602011.2019.1677480 Google ScholarPubMed
Qiu, D., Kwong, D.L., Chan, G.C., Leung, L.H., & Khong, P.L. (2007). Diffusion tensor magnetic resonance imaging finding of discrepant fractional anisotropy between the frontal and parietal lobes after whole-brain irradiation in childhood medulloblastoma survivors: Reflection of regional white matter radiosensitivity? International Journal of Radiation Oncology Biology Physsics, 69(3), 846851. doi: 10.1016/j.ijrobp.2007.04.041 CrossRefGoogle ScholarPubMed
Ris, M.D. & Noll, R.B. (1994). Long-term neurobehavioral outcome in pediatric brain-tumor patients: Review and methodological critique. Journal of Clinical and Experimental Neuropsychology, 16(1), 2142.10.1080/01688639408402615CrossRefGoogle ScholarPubMed
Robinson, H., Calamia, M., Gläscher, J., Bruss, J., & Tranel, D. (2014). Neuroanatomical correlates of executive functions: A neuropsychological approach using the EXAMINER battery. Journal of the International Neuropsychological Society, 20(1), 5263.CrossRefGoogle ScholarPubMed
Robinson, K.E., Fraley, C.E., Pearson, M.M., Kuttesch, J.F., & Compas, B.E. (2013). Neurocognitive late effects of pediatric brain tumors of the posterior fossa: A quantitative review. Journal of the International Neuropsychological Society, 19(1), 4453. doi: 10.1017/S1355617712000987 CrossRefGoogle ScholarPubMed
Robinson, K.E., Wolfe, K.R., Yeates, K.O., Mahone, E.M., Cecil, K.M., & Ris, M.D. (2015). Predictors of adaptive functioning and psychosocial adjustment in children with pediatric brain tumor: A report from the brain radiation investigative study consortium. Pediatric Blood & Cancer, 62(3), 509516.CrossRefGoogle ScholarPubMed
Stargatt, R., Rosenfeld, J.V., Anderson, V., Hassall, T., Maixner, W., & Ashley, D. (2006). Intelligence and adaptive function in children diagnosed with brain tumour during infancy. Journal of Neuro-Oncology, 80(3), 295303.CrossRefGoogle ScholarPubMed
Strauss, E., Sherman, E.M., & Spreen, O. (2006). A compendium of neuropsychological tests. New York: Oxford University Press.Google Scholar
Taiwo, Z., Na, S., & King, T.Z. (2017). The Neurological Predictor Scale: A predictive tool for long-term core cognitive outcomes in survivors of childhood brain tumors. Pediatric Blood & Cancer, 64(1), 172179.10.1002/pbc.26203CrossRefGoogle ScholarPubMed
Tarazi, R.A., Mahone, E.M., & Zabel, T.A. (2007). Self-care independence in children with neurological disorders: An interactional model of adaptive demands and executive dysfunction. Rehabilitation Psychology, 52(2), 196.10.1037/0090-5550.52.2.196CrossRefGoogle Scholar
Tokuno, K.A. (1986). The early adult transition and friendships: Mechanisms of support. Adolescence, 21(83), 593606.Google Scholar
Turner, C.D., Rey-Casserly, C., Liptak, C.C., & Chordas, C. (2009). Late effects of therapy for pediatric brain tumor survivors. Journal of Child Neurology, 24(11), 14551463. doi: 10.1177/0883073809341709 CrossRefGoogle ScholarPubMed
Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence manual. Psychological Corporation. San Antonio, TX: Hartcourt Brace and Company.Google Scholar
Wolfe, K.R., Walsh, K.S., Reynolds, N.C., Mitchell, F., Reddy, A.T., Paltin, I., & Madan-Swain, A. (2013). Executive functions and social skills in survivors of pediatric brain tumor. Child Neuropsychology, 19(4), 370384.10.1080/09297049.2012.669470CrossRefGoogle ScholarPubMed
Yeates, K.O., Swift, E., Taylor, H.G., Wade, S.L., Drotar, D., Stancin, T., & Minich, N. (2004). Short-and long-term social outcomes following pediatric traumatic brain injury. Journal of the International Neuropsychological Society, 10(3), 412426.CrossRefGoogle ScholarPubMed