Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T00:48:01.164Z Has data issue: false hasContentIssue false

Is treatment-resistant schizophrenia associated with distinct neurobiological callosal connectivity abnormalities?

Published online by Cambridge University Press:  10 August 2020

Idaiane Batista Assunção-Leme
Affiliation:
Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
André Zugman
Affiliation:
Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
Luciana Monteiro de Moura
Affiliation:
Hospital Israelita Albert Einstein, São Paulo, Brazil Departamento de Diagnóstico por Imagem, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
João Ricardo Sato
Affiliation:
Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil Center of Mathematics, Computing and Cognition, Universidade Federal do ABC (UFABC), Santo André, Brazil
Cinthia Higuchi
Affiliation:
Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
Bruno Bertolucci Ortiz
Affiliation:
Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil Programa de Esquizofrenia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
Cristiano Noto
Affiliation:
Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil Programa de Esquizofrenia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
Vanessa Kiyomi Ota
Affiliation:
Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
Sintia Iole Belangero
Affiliation:
Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
Rodrigo A. Bressan
Affiliation:
Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil Programa de Esquizofrenia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
Nicolas A. Crossley
Affiliation:
Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile Biomedical Imaging Center and Center for Integrative Neuroscience, Pontificia Universidad Católica de Chile, Santiago, Chile Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neurosciences, King’s College London, London, United Kingdom
Andrea P. Jackowski*
Affiliation:
Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
Ary Gadelha
Affiliation:
Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil Programa de Esquizofrenia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
*
Author for correspondence: Andrea P. Jackowski Email: andrea.jackowski@gmail.com

Abstract

Background

Resistance to antipsychotic treatment affects up to 30% of patients with schizophrenia. Although the time course of development of treatment-resistant schizophrenia (TRS) varies from patient to patient, the reasons for these variations remain unknown. Growing evidence suggests brain dysconnectivity as a significant feature of schizophrenia. In this study, we compared fractional anisotropy (FA) of brain white matter between TRS and non–treatment-resistant schizophrenia (non-TRS) patients. Our central hypothesis was that TRS is associated with reduced FA values.

Methods

TRS was defined as the persistence of moderate to severe symptoms after adequate treatment with at least two antipsychotics from different classes. Diffusion-tensor brain MRI obtained images from 34 TRS participants and 51 non-TRS. Whole-brain analysis of FA and axial, radial, and mean diffusivity were performed using Tract-Based Spatial Statistics (TBSS) and FMRIB’s Software Library (FSL), yielding a contrast between TRS and non-TRS patients, corrected for multiple comparisons using family-wise error (FWE) < 0.05.

Results

We found a significant reduction in FA in the splenium of corpus callosum (CC) in TRS when compared to non-TRS. The antipsychotic dose did not relate to the splenium CC.

Conclusion

Our results suggest that the focal abnormality of CC may be a potential biomarker of TRS.

Type
Original Research
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Andrea P. Jackowski and Ary Gadelha had the same level of contribution.

References

Howes, OD, McCutcheon, R, Agid, O, et al. Treatment-resistant schizophrenia: treatment response and resistance in psychosis (trrip) working group consensus guidelines on diagnosis and terminology. Am J Psychiatry. 2016;1(9). doi: 10.1176/appi.ajp.2016.16050503.Google Scholar
Kennedy, JL, Altar, CA, Taylor, DL, Degtiar, I, Hornberger, JC. The social and economic burden of treatment-resistant schizophrenia: a systematic literature review. Int Clin Psychopharmacol. 2014;29(2). https://journals.lww.com/intclinpsychopharm/Fulltext/2014/03000/The_social_and_economic_burden_of.1.aspx.CrossRefGoogle ScholarPubMed
Revicki, DA. Pharmacoeconomic evaluation of treatments for refractory schizophrenia: clozapine-related studies. J Clin Psychiatry. 1999;60(Suppl 1):711. discussion 28–30. http://www.ncbi.nlm.nih.gov/pubmed/10037164.Google ScholarPubMed
Gillespie, AL, Samanaite, R, Mill, J, Egerton, A, MacCabe, JH. Is treatment-resistant schizophrenia categorically distinct from treatment-responsive schizophrenia? A systematic review. BMC Psychiatry. 2017;17(1):114. doi: 10.1186/s12888-016-1177-y.CrossRefGoogle ScholarPubMed
Demjaha, A, Egerton, A, Murray, RM, et al. Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biol Psychiatry. 2014;75(5). doi: 10.1016/j.biopsych.2013.06.011.CrossRefGoogle ScholarPubMed
Yilmaz, Z, Zai, CC, Hwang, R, et al. Antipsychotics, dopamine D2 receptor occupancy and clinical improvement in schizophrenia: a meta-analysis. Schizophr Res. 2012;140(1–3):214220. doi: 10.1016/j.schres.2012.06.027.CrossRefGoogle ScholarPubMed
Van Sant, SP, Buckley, PF. Pharmacotherapy for treatment-refractory schizophrenia. Expert Opin Pharmacother. 2011;12(3):411434. doi: 10.1517/14656566.2011.528200.CrossRefGoogle ScholarPubMed
Elkis, H, Meltzer, HY. Refractory schizophrenia. Rev Bras Psiquiatr. 2007;29(Suppl 2):S41S47. doi: 10.1590/S1516-44462007000600002.CrossRefGoogle ScholarPubMed
Kelly, S, Jahanshad, N, Zalesky, A, et al. Widespread white matter microstructural differences in schizophrenia across 4322 individuals: results from the ENIGMA schizophrenia DTI working group. Mol Psychiatry. 2018;23(5):12611269. doi: 10.1038/mp.2017.170.CrossRefGoogle ScholarPubMed
Peters, BD, Blaas, J, de Haan, L. Diffusion tensor imaging in the early phase of schizophrenia: what have we learned? J Psychiatr Res. 2010;44(15):9931004. doi: 10.1016/j.jpsychires.2010.05.003.CrossRefGoogle ScholarPubMed
Friston, K, Brown, HR, Siemerkus, J, Stephan, KE. The dysconnection hypothesis (2016). Schizophr Res. 2016;176(2–3):8394. doi: 10.1016/j.schres.2016.07.014.CrossRefGoogle Scholar
Cheung, V, Cheung, C, McAlonan, GM, et al. A diffusion tensor imaging study of structural dysconnectivity in never-medicated, first-episode schizophrenia. Psychol Med. 2008;38(6):877885. doi: 10.1017/S0033291707001808.CrossRefGoogle ScholarPubMed
Bartzokis, G, Lu, PH, Stewart, SB, et al. In vivo evidence of differential impact of typical and atypical antipsychotics on intracortical myelin in adults with schizophrenia. Schizophr Res. 2009;113(2–3):322331. doi: 10.1016/j.schres.2009.06.014.CrossRefGoogle ScholarPubMed
Tishler, TA, Bartzokis, G, Lu, PH, et al. Abnormal trajectory of intracortical myelination in schizophrenia implicates white matter in disease pathophysiology and the therapeutic mechanism of action of antipsychotics. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(5):454462. doi: 10.1016/j.bpsc.2017.03.007.Google ScholarPubMed
Reis Marques, T, Taylor, H, Chaddock, C, et al. White matter integrity as a predictor of response to treatment in first episode psychosis. Brain. 2014;137(1):172182. doi: 10.1093/brain/awt310.CrossRefGoogle ScholarPubMed
Garver, DL, Holcomb, JA, Christensen, JD. Compromised myelin integrity during psychosis with repair during remission in drug-responding schizophrenia. Int J Neuropsychopharmacol. 2008;11(1):4961. doi: 10.1017/S1461145707007730.CrossRefGoogle ScholarPubMed
Patel, S, Mahon, K, Wellington, R, Zhang, J, Chaplin, W, Szeszko, PR. A meta-analysis of diffusion tensor imaging studies of the corpus callosum in schizophrenia. Schizophr Res. 2011;129(2–3):149155. doi: 10.1016/j.schres.2011.03.014.CrossRefGoogle Scholar
Assaf, Y, Pasternak, O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci. 2008;34(1):5161. doi: 10.1007/s12031-007-0029-0.CrossRefGoogle ScholarPubMed
Heng, S, Song, AW, Sim, K. White matter abnormalities in bipolar disorder: insights from diffusion tensor imaging studies. J Neural Transm. 2010;117(5):639654. doi: 10.1007/s00702-010-0368-9.CrossRefGoogle ScholarPubMed
Holleran, L, Ahmed, M, Anderson-Schmidt, H, et al. Altered interhemispheric and temporal lobe white matter microstructural organization in severe chronic schizophrenia. Neuropsychopharmacology. 2014;39:944954. doi: 10.1038/npp.2013.294.CrossRefGoogle ScholarPubMed
First, M. B., Gibbon, M., Spitzer, R. L., Williams, J. B. W., Benjamin, LS. Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I). American Psychiatric Publishing; 1996:1–4. doi: 10.1007/978-981-287-087-2_80-1.CrossRefGoogle Scholar
Smith, SM, Jenkinson, M, Woolrich, MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004; 23. doi: 10.1016/j.neuroimage.2004.07.051.CrossRefGoogle ScholarPubMed
Smith, SM, Jenkinson, M, Johansen-Berg, H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31(4):14871505. doi: 10.1016/j.neuroimage.2006.02.024.CrossRefGoogle ScholarPubMed
Wakana, S, Caprihan, A, Panzenboeck, MM, et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage. 2007;36(3):630644. doi: 10.1016/j.neuroimage.2007.02.049.CrossRefGoogle ScholarPubMed
Mori, S (Susumu), Crain, BJ. MRI Atlas of Human White Matter. Elsevier; 2005.Google Scholar
Mori, S, Oishi, K, Jiang, H, et al. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage. 2008;40(2):570582. doi: 10.1016/j.neuroimage.2007.12.035.CrossRefGoogle Scholar
Winkler, AM, Ridgway, GR, Webster, M A., Smith, SM, Nichols, TE. Permutation inference for the general linear model. Neuroimage. 2014;92:381397. doi: 10.1016/j.neuroimage.2014.01.060.CrossRefGoogle ScholarPubMed
Jenkinson, M, Beckmann, CF, Behrens, TEJ, Woolrich, MW, Smith, SM. FSL. Neuroimage. 2012;62(2):782790. doi: 10.1016/j.neuroimage.2011.09.015.CrossRefGoogle ScholarPubMed
Aydin, K, Ucok, A, Guler, J. Altered metabolic integrity of corpus callosum among individuals at ultra high risk of schizophrenia and first-episode patients. Biol Psychiatry. 2008;64(9):750757. doi: 10.1016/j.biopsych.2008.04.007.CrossRefGoogle ScholarPubMed
Foong, J, Maier, M, Clark, CA, Barker, GJ, Miller, DH, Ron, MA. Neuropathological abnormalities of the corpus callosum in schizophrenia: a diVusion tensor imaging study. J Neurol Neurosurg Psychiatry. 2000;68:242244.CrossRefGoogle ScholarPubMed
Rotarska-Jagiela, A, Schönmeyer, R, Oertel, V, Haenschel, C, Vogeley, K, Linden, DEJ. The corpus callosum in schizophrenia-volume and connectivity changes affect specific regions. Neuroimage. 2008;39(4):15221532. doi: 10.1016/j.neuroimage.2007.10.063.CrossRefGoogle ScholarPubMed
Basser, PJ. Inferring microstructural features and the physiological. NMR Biomed. 1995;8(7–8):333344.CrossRefGoogle ScholarPubMed
Sun, J, Maller, JJ, Daskalakis, ZJ, Furtado, CC FP. Morphology of the corpus callosum in treatment‐resistant schizophrenia and major depression. Acta Psychiatr Scand. 2009;120(4):265273. doi: 10.1111/j.1600-0447.2009.01389.x.CrossRefGoogle ScholarPubMed
Crocker, CE, Tibbo, PG. Confused connections? Targeting white matter to address treatment resistant schizophrenia. Front Pharmacol. 2018;9:117. doi: 10.3389/fphar.2018.01172.Google ScholarPubMed
Mitelman, SA, Torosjan, Y, Newmark, RE, et al. Internal capsule, corpus callosum and long associative fibers in good and poor outcome schizophrenia: a diffusion tensor imaging survey. Schizophr Res. 2007;92(1–3):211224. doi: 10.1016/j.schres.2006.12.029.CrossRefGoogle ScholarPubMed
Mitelman, SA, Nikiforova, YK, Canfield, EL, et al. A longitudinal study of the corpus callosum in chronic schizophrenia. Schizophr Res. 2009;114(1–3):144153. doi: 10.1016/j.schres.2009.07.021.CrossRefGoogle ScholarPubMed
Chen, M, Ke, X-Y, Zhuo, C-J, et al. Specific white matter impairments in patients with treatment-refractory first-episode schizophrenia: a 1-year follow-up pilot study. Chin Med J (Engl). 2018;131(7):879880. doi: 10.4103/0366-6999.228233.CrossRefGoogle ScholarPubMed
Kochunov, P, Huang, J, Chen, S, et al. White matter in schizophrenia treatment resistance. Am J Psychiatry. 2019;(18). doi: 10.1176/appi.ajp.2019.18101212.CrossRefGoogle ScholarPubMed
Ellison-Wright, I, Bullmore, E. Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res. 2009;108(1–3):310. doi: 10.1016/j.schres.2008.11.021.CrossRefGoogle Scholar
Bora, E, Fornito, A, Radua, J, et al. Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis. Schizophr Res. 2011;127(1–3):4657. doi: 10.1016/j.schres.2010.12.020.CrossRefGoogle ScholarPubMed
Alexander, AL, Lee, JE, Lazar, M, Field, AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4(3):316329. doi: 10.1016/j.nurt.2007.05.011.CrossRefGoogle ScholarPubMed
Jones, DK, Knösche, TR, Turner, R. White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage. 2013;73:239254. doi: 10.1016/j.neuroimage.2012.06.081.CrossRefGoogle ScholarPubMed
Wheeler-Kingshott, CAM, Cercignani, M. About “axial” and “radial” diffusivities. Magn Reson Med. 2009. doi: 10.1002/mrm.21965.CrossRefGoogle Scholar
Seo, Y. Effects of different field strengths, gradient directions, and acquisitions on fractional anisotropy in diffusion tensor imaging: a tract-based spatial statistics study. Concepts Magn Reson Part B Magn Reson Eng. 2013;43B(1):4148. doi: 10.1002/cmr.b.21230.CrossRefGoogle Scholar