Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-16T12:37:57.366Z Has data issue: false hasContentIssue false

Social buffering of the maternal and infant HPA axes: Mediation and moderation in the intergenerational transmission of adverse childhood experiences

Published online by Cambridge University Press:  02 August 2018

Jenna C. Thomas
Affiliation:
University of Calgary
Nicole Letourneau
Affiliation:
University of Calgary
Tavis S. Campbell
Affiliation:
University of Calgary
Gerald F. Giesbrecht*
Affiliation:
University of Calgary
Apron Study Team
Affiliation:
University of Calgary
*
Address correspondence and reprint requests to: Gerald F. Giesbrecht, Department of Pediatrics, University of Calgary, Child Development Center, #355, 3820–24 Ave., NW, Calgary, AB, Canada, T3B 2X9; E-mail: ggiesbre@ucalgary.ca.

Abstract

Supportive social relationships can reduce both psychological and physiological responses to stressful experiences. Recently, studies have also assessed the potential for social relationships to buffer the intergenerational transmission of stress. The majority of these studies, however, have focussed on social learning as a mechanism responsible for the intergenerational transmission of stress. Evidence of biological mechanisms is lacking. The objective of the current study was, therefore, to determine whether the association between maternal adverse childhood experiences (ACEs) and infant hypothalamic–pituitary–adrenal (HPA) axis function is mediated by maternal HPA axis function during pregnancy and moderated by social support. Data were from 243 mother–infant dyads enrolled in a prospective longitudinal cohort (the Alberta Pregnancy Outcomes and Nutrition Study). Maternal history of ACEs was retrospectively assessed while maternal perceived social support and salivary cortisol were assessed prospectively at 6–22 weeks gestation (Time 1) and 27–37 weeks gestation (Time 2), and infant cortisol reactivity to a laboratory stressor and maternal perceived social support were assessed at 5–10 months postnatal (Time 3). Results revealed that maternal HPA axis function during pregnancy mediated the effects of maternal ACEs on infant HPA axis reactivity, suggesting that the maternal HPA axis is a mechanism by which maternal early life stress is transmitted to offspring. Furthermore, social support in the prenatal and postnatal periods moderated the cascade from maternal ACEs to infant HPA axis reactivity. Specifically, prenatal social support moderated the association between ACEs and maternal HPA axis function during pregnancy, and postnatal social support moderated the association between maternal HPA axis function and infant cortisol reactivity. These findings highlight the social sensitivity of the HPA axis and suggest the utility of social relationships as an intervention target to reduce the effects of maternal early life stress on infant outcomes.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, E. K., & Gunnar, M. R. (2001). Relationship functioning and home and work demands predict individual differences in diurnal cortisol patterns in women. Psychoneuroendocrinology, 26, 189208. doi:10.1016/S0306-4530(00)00045-7Google Scholar
Adam, E. K., Quinn, M. E., Tavernier, R., McQuillan, M. T., Dahlke, K. A., & Gilbert, K. E. (2017). Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocrinology, 83, 2541. doi:10.1016/j.psyneuen.2017.05.018Google Scholar
Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Thousand Oaks, CA: Sage.Google Scholar
Anda, R. F., Croft, J. B., Felitti, V. J., Nordenberg, D., Giles, W. H., Williamson, D. F., & Giovano, G. A. (1999). Adverse childhood experiences and smoking during adolescence and adulthood. Journal of the American Medical Association, 282, 16521658.Google Scholar
Anda, R. F., Felitti, V. J., Bremner, J. D., Walker, J. D., Whitfield, C., Perry, B. D., … Giles, W. H. (2006). The enduring effects of abuse and related adverse experiences in childhood: A convergence of evidence from neurobiology and epidemiology. European Archives of Psychiatry and Clinical Neuroscience, 256, 174186. doi:10.1007/s00406-005-0624-4Google Scholar
Bergman, K., Sarkar, P., Glover, V., & O'Connor, T. G. (2010). Maternal prenatal cortisol and infant cognitive development: Moderation by infant-mother attachment. Biological Psychiatry, 67, 10261032. doi:10.1016/j.biopsych.2010.01.002Google Scholar
Bowers, M. E., & Yehuda, R. (2016). Intergenerational transmission of stress in humans. Neuropsychopharmacology, 41, 232244. doi:10.1038/npp.2015.247Google Scholar
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.Google Scholar
Bright, M. A., Frick, J. E., Out, D., & Granger, D. A. (2014). Individual differences in the cortisol and salivary α-amylase awakening responses in early childhood: Relations to age, sex, and sleep. Developmental Psychobiology, 56, 13001315. doi:10.1002/dev.2120Google Scholar
Bruskas, D., & Tessin, D. H. (2013). Adverse childhood experiences and psychosocial well-being of women who were in foster care as children. Permanente Journal, 17, e131e141. doi:10.7812/TPP/12-121Google Scholar
Bublitz, M. H., Parade, S., & Stroud, L. R. (2014). The effects of childhood sexual abuse on cortisol trajectories in pregnancy are moderated by current family functioning. Biological Psychology, 103, 152157. doi:10.1016/j.biopsycho.2014.08.014Google Scholar
Bublitz, M. H., & Stroud, L. R. (2012). Childhood sexual abuse is associated with cortisol awakening response over pregnancy: Preliminary findings. Psychoneuroendocrinology, 37, 14251430. doi:10.1016/j.psyneuen.2012.01.009Google Scholar
Campos, B., Dunkel Schetter, C., Abdou, C. M., Hobel, C. J., Glynn, L. M., & Sandman, C. A. (2008). Familialism, social support, and stress: Positive implications for pregnant Latinas. Cultural Diversity and Ethnic Minority Psychology, 14, 155162. doi:10.1037/1099-9809.14.2.155Google Scholar
Center on the Developing Child at Harvard University. (2010). The foundations of lifelong health are built in early childhood. Retrieved from http://www.developingchild.harvard.eduGoogle Scholar
Cicchetti, D., & Rogosch, F. A. (2001). Diverse patterns of neuroendocrine activity in maltreated children. Developmental Psychopathology, 13, 677693.Google Scholar
Cohen, S., Doyle, W. J., & Baum, A. (2006). Socioeconomic status is associated with stress hormones. Psychosomatic Medicine, 68, 414420. doi:10.1097/01.psy.0000221236.37158.b9Google Scholar
Conger, R. D., Schofield, T. J., Neppl, T. K., & Merrick, M. T. (2013). Disrupting intergenerational continuity in harsh and abusive parenting: The importance of a nurturing relationship with a romantic partner. Journal of Adolescent Health, 53, S11S17. doi:10.1016/j.jadohealth.2013.03.014Google Scholar
Davis, E. P., Glynn, L. M., Waffarn, F., & Sandman, C. A. (2011). Prenatal maternal stress programs infant stress regulation. Journal of Child Psychology and Psychiatry, 52, 119129. doi:10.1111/j.1469-7610.2010.02314.xGoogle Scholar
Davis, E. P., & Sandman, C. A. (2010). The timing of prenatal exposure to maternal cortisol and psychosocial stress is associated with human infant cognitive development. Child Development, 81, 131148. doi:10.1111/j.1467-8624.2009.01385.xGoogle Scholar
Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2011). The adaptive calibration model of stress responsivity. Neuroscience and Biobehavioral Reviews, 35, 15621592. doi:10.1016/j.neubiorev.2010.11.007Google Scholar
de Weerth, C., & Buitelaar, J. K. (2005). Physiological stress reactivity in human pregnancy—A review. Neuroscience and Biobehavioral Reviews, 29, 295312. doi:10.1016/j.neubiorev.2004.10.005Google Scholar
Ditzen, B., Neumann, I. D., Bodenmann, G., von Dawans, B., Turner, R. A., Ehlert, U., & Heinrichs, M. (2007). Effects of different kinds of couple interaction on cortisol and heart rate responses to stress in women. Psychoneuroendocrinology, 32, 565574. doi:10.1016/j.psyneuen.2007.03.011Google Scholar
Doyle, C., & Cicchetti, D. (2017). From the cradle to the grave: The effect of adverse caregiving environments on attachment and relationships throughout the lifespan. Clinical Psychology: Science and Practice, 24, 203217. doi:10.1111/cpsp.12192Google Scholar
Dozier, M., Peloso, E., Lewis, E., Laurenceau, J. P., & Levine, S. (2008). Effects of an attachment-based intervention on the cortisol production of infants and toddlers in foster care. Developmental Psychopathology, 20, 845859. doi:10.1017/S0954579408000400Google Scholar
Dube, S. R., Anda, R. F., Felitti, V. J., Edwards, V. J., & Croft, J. B. (2002). Adverse childhood experiences and personal alcohol abuse as an adult. Addictive Behaviors, 27, 713725.Google Scholar
Dube, S. R., Felitti, V., Dong, M., Chapman, D. P., Giles, W. H., & Anda, R. F. (2003). Childhood abuse, neglect, and household dysfunction and the risk of illicit drug use: The adverse childhood experiences study. Pediatrics, 111, 564572.Google Scholar
Dube, S. R., Williamson, D. F., Thompson, T., Felitti, V. J., & Anda, R. F. (2004). Assessing the reliability of retrospective reports of adverse childhood experiences among adult HMO members attending a primary care clinic. Child Abuse & Neglect, 28, 729737. doi:10.1016/j.chiabu.2003.08.009Google Scholar
Duthie, L., & Reynolds, R. M. (2013). Changes in the maternal hypothalamic-pituitary-adrenal axis in pregnancy and postpartum: Influences on maternal and fetal outcomes. Neuroendocrinology, 98, 106115. doi:10.1159/000354702Google Scholar
Edwards, V. J., Holden, G. W., Felitti, V. J., & Anda, R. F. (2003). Relationship between multiple forms of childhood maltreatment and adult mental health in community respondents: Results from the adverse childhood experiences study. American Journal of Psychiatry, 160, 14531460. doi:10.1176/appi.ajp.160.8.1453Google Scholar
Ellman, L. M., Dunkel Schetter, C., Hobel, C. J., Chicz-DeMet, A., Glynn, L. M., & Sandman, C. A. (2008). Timing of fetal exposure to stress hormones: Effects on newborn physical and neuromuscular maturation. Developmental Psychobiology, 50, 232241. doi:10.1002/dev.20293Google Scholar
Enlow, M. B., King, L., Schreier, H. M. C., Howard, J. M., Rosenfield, D., Ritz, T., & Wright, R. J. (2014). Maternal sensitivity and infant autonomic and endocrine stress responses. Early Human Development, 90, 377385. doi:10.1016/j.earlhumdev.2014.04.007Google Scholar
Entringer, S., Buss, C., Andersen, J., Chicz-DeMet, A., & Wadhwa, P. D. (2011). Ecological momentary assessment of maternal cortisol profiles over a multiple-day period predicts the length of human gestation. Psychosomatic Medicine, 73, 469474. doi:10.1097/PSY.0b013e31821fbf9aGoogle Scholar
Fekedulegn, D. B., Andrew, M. E., Burchfiel, C. M., Violanti, J. M., Hartley, T. A., Charles, L. E., & Miller, D. B. (2007). Area under the curve and other summary indicators of repeated waking cortisol measurements. Psychosomatic Medicine, 69, 651659. doi:10.1097/PSY.0b013e31814c405cGoogle Scholar
Feldman, R., Greenbaum, C. W., & Yirmiya, N. (1999). Mother-infant affect synchrony as an antecedent of the emergence of self-control. Developmental Psychology, 35, 223231. doi:10.1037/0012-1649.35.1.223Google Scholar
Felitti, V. J., Anda, R. F., Nordenberg, D., Williamson, D. F., Spitz, A. M., Edwards, V., … Marks, J. S. (1998). Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. American Journal of Preventive Medicine, 14, 245258. doi:10.1016/S0749-3797(98)00017-8Google Scholar
Field, T., Hernandez-Reif, M., Diego, M., Figueiredo, B., Schanberg, S., & Kuhn, C. (2006). Prenatal cortisol, prematurity and low birthweight. Infant Behavior and Development, 29, 268275. doi:10.1016/j.infbeh.2005.12.010Google Scholar
Flory, J. D., Bierer, L. M., & Yehuda, R. (2011). Maternal exposure to the holocaust and health complaints in offspring. Disease Markers, 30, 133139. doi:10.3233/DMA-2011-0748Google Scholar
Fries, E., Dettenborn, L., & Kirschbaum, C. (2009). The cortisol awakening response (CAR): Facts and future directions. International Journal of Psychophysiology, 72, 6773. doi:10.1016/j.ijpsycho.2008.03.014Google Scholar
Garbrecht, M. R., Klein, J. M., Schmidt, T. J., & Snyder, J. M. (2006). Glucocorticoid metabolism in the human fetal lung: Implications for lung development and the pulmonary surfactant system. Biology of the Neonate, 89, 109119. doi:10.1159/000088653Google Scholar
Giesbrecht, G. F., Campbell, T., Letourneau, N., & APrON Study Team. (2015). Sexually dimorphic adaptations in basal maternal stress physiology during pregnancy and implications for fetal development. Psychoneuroendocrinology, 56, 168178. doi:10.1016/j.psyneuen.2015.03.013Google Scholar
Giesbrecht, G. F., Letourneau, N., & Campbell, T. S. (2017). Sexually dimorphic and interactive effects of prenatal maternal cortisol and psychological distress on infant cortisol reactivity. Development and Psychopathology, 29, 805818. doi:10.1017/S0954579416000493Google Scholar
Giesbrecht, G. F., Letourneau, N., Campbell, T. S., & APrON Study Team. (2017). Sexually dimorphic and interactive effects of prenatal maternal cortisol and psychological distress on infant cortisol reactivity. Development and Psychopathology, 29, 805818. doi:10.1017/S0954579416000493Google Scholar
Giesbrecht, G. F., Poole, J. C., Letourneau, N., Campbell, T., & Kaplan, B. J. (2013). The buffering effect of social support on hypothalamic-pituitary-adrenal axis function during pregnancy. Psychosomatic Medicine, 75, 856862. doi:10.1097/PSY.0000000000000004Google Scholar
Gitau, R., Fisk, N. M., Teixeira, J. M., Cameron, A., & Glover, V. (2001). Fetal hypothalamic-pituitary-adrenal stress responses to invasive procedures are independent of maternal responses. Journal of Clinical Endocrinology & Metabolism, 86, 104109. doi:10.1210/jcem.86.1.7090Google Scholar
Glynn, L. M., Wadhwa, P. D., Dunkel-Schetter, C., Chicz-Demet, A., & Sandman, C. A. (2001). When stress happens matters: Effects of earthquake timing on stress responsivity in pregnancy. American Journal of Obstetrics and Gynecology, 184, 637642. doi:10.1067/mob.2001.111066Google Scholar
Goldsmith, H. H., & Rothbart, M. K. (1996). The Laboratory Temperament Assessment Battery. Prelocomotor Version, V.3.00. Madison, WI: University of Wisconsin, Department of Psychology.Google Scholar
Goldstein, L. H., Diener, M. L., & Mangelsdorf, S. C. (1996). Maternal characteristics and social support across the transition to motherhood: Associations with maternal behavior. Journal of Family Psychology, 10, 6071. doi:10.1037/0893-3200.10.1.60Google Scholar
Gonzalez, A., Jenkins, J. M., Steiner, M., & Fleming, A. S. (2009). The relation between early life adversity, cortisol awakening response and diurnal salivary cortisol levels in postpartum women. Psychoneuroendocrinology, 34, 7686. doi:10.1016/j.psyneuen.2008.08.012Google Scholar
Graham, A. M., Yockelson, M., Kim, H. K., Bruce, J., Pears, K. C., & Fisher, P. A. (2012). Effects of maltreatment and early intervention on diurnal cortisol slope across the start of school: A pilot study. Child Abuse & Neglect, 36, 666670. doi:10.1016/j.chiabu.2012.07.006Google Scholar
Grant, K. A., McMahon, C., Reilly, N., & Austin, M. P. (2010). Maternal sensitivity moderates the impact of prenatal anxiety disorder on infant responses to the still-face procedure. Infant Behavior & Development, 33, 453462. doi:10.1016/j.infbeh.2010.05.001Google Scholar
Grunau, R. E., Haley, D. W., Whitfield, M. F., Weinberg, J., Yu, W., & Thiessen, P. (2007). Altered basal cortisol levels at 3, 6, 8 and 18 months in infants born at extremely low gestational age. Journal of Pediatrics, 150, 151156. doi:10.1016/j.jpeds.2006.10.053Google Scholar
Gunnar, M. R. (1998). Quality of early care and buffering of neuroendocrine stress reactions: Potential effects on the developing human brain. Preventive Medicine, 27, 208211. doi:10.1006/pmed.1998.0276Google Scholar
Gunnar, M. R., Brodersen, L., Nachmias, M., Buss, K., & Rigatuso, J. (1996). Stress reactivity and attachment security. Developmental Psychobiology, 29, 191204.Google Scholar
Gunnar, M. R., & Donzella, B. (2002). Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology, 27, 199220. doi:10.1016/S0306-4530(01)00045-2Google Scholar
Gunnar, M. R., & Hostinar, C. E. (2015). The social buffering of the hypothalamic-pituitary-adrenocortical axis in humans: Developmental and experiential determinants. Social Neuroscience, 10, 479488. doi:10.1080/17470919.2015.1070747Google Scholar
Gunnar, M. R., & Vazquez, D. (2006). Stress neurobiology and developmental psychopathology. In Cicchetti, D. & Cohen, D. (Eds.), Developmental psychopathology: Developmental neuroscience (Vol. 2, pp. 533577) New York: Wiley.Google Scholar
Gutteling, B. M., de Weerth, C., & Buitelaar, J. K. (2004). Maternal prenatal stress and 4-6 year old children's salivary cortisol concentrations pre- and post-vaccination. Stress, 7, 257260. doi:10.1080/10253890500044521Google Scholar
Gutteling, B. M., de Weerth, C., & Buitelaar, J. K. (2005). Prenatal stress and children's cortisol reaction to the first day of school. Psychoneuroendocrinology, 30, 541549. doi:10.1016/j.psyneuen.2005.01.002Google Scholar
Hayes, A. F. (2012). PROCESS: A versatile computational tool for observed variable mediation, moderation, and conditional process modeling. Retrieved from http://www.afhayes.com/Google Scholar
Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Guilford Press.Google Scholar
Hayes, A. F., & Preacher, K. J. (2013). Conditional process modeling: Using structural equation modeling to examine contingent causal processes. In Hancock, G. R. & Mueller, R. O. (Eds.), Structural equation modeling: A second course (2nd ed., pp. 219266) Charlotte, NC: Information Age Publishing.Google Scholar
Heinrichs, M., Baumgartner, T., Kirschbaum, C., & Ehlert, U. (2003). Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry, 54, 13891398.Google Scholar
Hobel, C. J., Goldstein, A., & Barrett, E. S. (2008). Psychosocial stress and pregnancy outcome. Clinical Obstetrics and Gynecology, 51, 333348. doi:10.1097/GRF.0b013e31816f2709Google Scholar
Hoffman, S., & Hatch, M. C. (1996). Stress, social support and pregnancy outcome: A reassessment based on recent research. Paediatric and Perinatal Epidemiology, 10, 380405. doi:10.1111/j.1365-3016.1996.tb00063.xGoogle Scholar
Hostinar, C. E., Sullivan, R. M., & Gunnar, M. R. (2014). Psychobiological mechanisms underlying the social buffering of the HPA axis: A review of animal models and human studies across development. Psychological Bulletin, 140, 256282. doi:10.1037/a0032671Google Scholar
Hyman, S. M., Gold, S. N., & Cott, M. A. (2003). Forms of social support that moderate PTSD in childhood sexual abuse survivors. Journal of Family Violence, 18, 295300. doi:10.1023/A:1025117311660Google Scholar
Johnson, P. O., & Neyman, J. (1936). Tests of certain linear hypotheses and their application to some educational problems. Statistical Research Memoirs, 1, 5793.Google Scholar
Jung, C., Ho, J. T., Torpy, D. J., Rogers, A., Doogue, M., Lewis, J. G., … Inder, W. J. (2011). A longitudinal study of plasma and urinary cortisol in pregnancy and postpartum. Journal of Clinical Endocrinology and Metabolism, 96, 15331540. doi:10.1210/jc.2010-2395Google Scholar
Kaplan, B. J., Giesbrecht, G. F., Leung, B. M. L., Field, C. J., Dewey, D., Bell, R. C., … APrON Study Team. (2012). The Alberta Pregnancy Outcomes and Nutrition (APrON) cohort study: Rationale and methods. Maternal & Child Nutrition, 10, 4460. doi:10.1111/j.1740-8709.2012.00433.xGoogle Scholar
Karb, R. A., Elliott, M. R., Dowd, J. B., & Morenoff, J. D. (2012). Neighborhood-level stressors, social support, and diurnal patterns of cortisol: The Chicago Community Adult Health Study. Social Science & Medicine, 75, 10381047. doi:10.1016/j.socscimed.2012.03.031Google Scholar
Kendler, K. S., Myers, J., & Prescott, C. A. (2005). Sex differences in the relationship between social support and risk for major depression: A longitudinal study of opposite-sex twin pairs. American Journal of Psychiatry, 162, 250256. doi:10.1176/appi.ajp.162.2.250Google Scholar
Kirschbaum, C., & Hellhammer, D. H. (1999). Noise and stress—Salivary cortisol as a non-invasive measure of allostatic load. Noise Health, 1, 5766.Google Scholar
Kirschbaum, C., Klauer, T., Filipp, S. H., & Hellhammer, D. H. (1995). Sex-specific effects of social support on cortisol and subjective responses to acute psychological stress. Psychosomatic Medicine, 57, 2331.Google Scholar
Kivlighan, K. T., DiPietro, J. A., Costigan, K. A., & Laudenslager, M. L. (2008). Diurnal rhythm of cortisol during late pregnancy: Associations with maternal psychological well-being and fetal growth. Psychoneuroendocrinology, 33, 12251235. doi:10.1016/j.psyneuen.2008.06.008Google Scholar
Laurent, H. K., Ablow, J. C., & Measelle, J. (2012). Taking stress response out of the box: Stability, discontinuity, and temperament effects on HPA and SNS across social stressors in mother–infant dyads. Developmental Psychology, 48, 3545. doi:10.1037/a0025518Google Scholar
Lebel, C., Walton, M., Letourneau, N., Giesbrecht, G. F., Kaplan, B. J., & Dewey, D. (2015). Prepartum and postpartum maternal depressive symptoms are related to children's brain structure in preschool. Biological Psychiatry, 80, 859868. doi:10.1016/j.biopsych.2015.12.004Google Scholar
Leung, B. M. Y., McDonald, S., Kaplan, B. J., Giesbrecht, G., & Tough, S. C. (2013). Comparison of sample characteristics in two pregnancy cohorts: Community-based versus population-based recruitment methods. BMC Medical Research Methods, 6, 149. doi:10.1186/1471-2288-13-149Google Scholar
Lu, S., Gao, W., Wei, Z., Wu, W., Liao, M., Ding, Y., … Li, L. (2013). Reduced cingulate gyrus volume associated with enhanced cortisol awakening response in young healthy adults reporting childhood trauma. PLOS ONE, 8, e69350. doi:10.1371/journal.pone.0069350Google Scholar
Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2001). Can poverty get under your skin? Basal cortisol levels and cognitive function in children from low and high socioeconomic status. Development and Psychopathology, 13, 653676.Google Scholar
Madigan, S., Wade, M., Tarabulsy, G., Jenkins, J. M., & Shouldice, M. (2014). Association between abuse history and adolescent pregnancy: A meta-analysis. Journal of Adolescent Health, 55, 151159. doi:10.1016/j.jadohealth.2014.05.002Google Scholar
McGowan, P. O., Sasaki, A., D'Alessio, A. C., Dymov, S., Labonté, B., Szyf, M., … Meaney, M. J. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12, 342348. doi:10.1038/nn.2270Google Scholar
Metzler, M., Merrick, M. T., Klevens, J., Ports, K. A., & Ford, D. C. (2017). Adverse childhood experiences and life opportunities: Shifting the narrative. Children and Youth Services Review, 72, 141149. doi:10.1016/j.childyouth.2016.10.021Google Scholar
Mills-Koonce, W. R., Garrett-Peters, P., Barnett, M., Granger, D. A., Blair, C., Cox, M. J., & Family Life Project Key Investigators. (2011). Father contributions to cortisol responses in infancy and toddlerhood. Developmental Psychology, 47, 388395. doi:10.1037/a0021066Google Scholar
Mueller, B. R., & Bale, T. L. (2007). Early prenatal stress impact on coping strategies and learning performance is sex dependent. Physiology & Behavior, 91, 5565.Google Scholar
Murphy, V., & Clifton, V. (2003). Alterations in human placental 11β-hydroxysteroid dehydrogenase type 1 and 2 with gestational age and labour. Placenta, 24, 739744.Google Scholar
Nachmias, M., Gunnar, M., Mangelsdorf, S., Parritz, R. H., & Buss, K. (1996). Behavioral inhibition and stress reactivity: The moderating role of attachment security. Child Development, 67, 508522. doi:10.1111/j.1467-8624.1996.tb01748.xGoogle Scholar
O'Connor, T. G., Bergman, K., Sarkar, P., & Glover, V. (2013). Prenatal cortisol exposure predicts infant cortisol response to acute stress. Developmental Psychobiology, 55, 145155. doi:10.1002/dev.21007Google Scholar
Okun, M. L., Krafty, R. T., Buysse, D. J., Monk, T. H., Reynolds, C. F., Begley, A., & Hall, M. (2010). What constitutes too long of a delay? Determining the cortisol awakening response (CAR) using self-report and PSG-assessed wake time. Psychoneuroendocrinology, 35, 460468.Google Scholar
Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments & Computers, 36, 717731. doi:10.3758/BF03206553Google Scholar
Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40, 879891. doi:10.3758/BRM.40.3.879Google Scholar
Pruessner, J. C., Kirschbaum, C., Meinlschmid, G., & Hellhammer, D. H. (2003). Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology, 28, 916931. doi:10.1016/S0306-4530(02)00108-7Google Scholar
Public Health Agency of Canada. (2009). What mothers say: The Canadian Maternity Experiences Survey. Ottawa: Government of Canada.Google Scholar
Reis, F. M., Fadalti, M., Florio, P., & Petraglia, F. (1999). Putative role of placental corticotropin-releasing factor in the mechanisms of human parturition. Journal of the Society for Gynecologic Investigation, 6, 109119. doi:10.1016/S1071-5576(99)00009-XGoogle Scholar
Rini, C., Dunkel Schetter, C., Hobel, C. J., Glynn, L. M., & Sandman, C. A. (2006). Effective social support: Antecedents and consequences of partner support during pregnancy. Personal Relationships, 13, 207229. doi:10.1111/j.1475-6811.2006.00114.xGoogle Scholar
Runtz, M. G., & Schallow, J. R. (1997). Social support and coping strategies as mediators of adult adjustment following childhood maltreatment. Child Abuse & Neglect, 21, 211226. doi:10.1016/S0145-2134(96)00147-0Google Scholar
Sandman, C. A., Glynn, L. M., & Davis, E. P. (2013). Is there a viability-vulnerability tradeoff? Sex differences in fetal programming. Journal of Psychosomatic Research, 75, 327335. doi:10.1016/j.jpsychores.2013.07.009Google Scholar
Sandman, C. A., Glynn, L., Schetter, C. D., Wadhwa, P., Garite, T., Chicz-DeMet, A., & Hobel, C. (2006). Elevated maternal cortisol early in pregnancy predicts third trimester levels of placental corticotropin releasing hormone (CRH): Priming the placental clock. Peptides, 27, 14571463. doi:10.1016/j.peptides.2005.10.002Google Scholar
Sarkadi, A., Kristiansson, R., Oberklaid, F., & Bremberg, S. (2008). Fathers’ involvement and children's developmental outcomes: A systematic review of longitudinal studies. Acta Paediatrica, 97, 153158. doi:10.1111/j.1651-2227.2007.00572.xGoogle Scholar
Schlotz, W., Hellhammer, J., Schulz, P., & Stone, A. A. (2004). Perceived work overload and chronic worrying predict weekend-weekday differences in the cortisol awakening response. Psychosomatic Medicine, 66, 207214. doi:10.1097/01.psy.0000116715.78238.56Google Scholar
Shea, A. K., Streiner, D. L., Fleming, A., Kamath, M. V., Broad, K., & Steiner, M. (2007). The effect of depression, anxiety and early life trauma on the cortisol awakening response during pregnancy: Preliminary results. Psychoneuroendocrinology, 32, 10131020. doi:10.1016/j.psyneuen.2007.07.006Google Scholar
Shin, H., Park, Y. J., & Mi, J. K. (2006). Predictors of maternal sensitivity during the early postpartum period. Journal of Advanced Nursing, 55, 425434. doi:10.1111/j.1365-2648.2006.03943.xGoogle Scholar
Stapleton, L. R., Dunkel Schetter, C., Westling, E., Rini, C., Glynn, L. M., Hobel, C. J., & Sandman, C. A. (2012). Perceived partner support in pregnancy predicts lower maternal and infant distress. Journal of Family Psychology, 26, 453463. doi:10.1037/a0028332Google Scholar
Tabachnick, B. G., & Fidell, L. S. (2012). Using multivariate statistics (6th ed.) Boston: Pearson.Google Scholar
Thomas, J. C., Letourneau, N., Bryce, C. I., Campbell, T. S., Giesbrecht, G. F., & APrON Study Team. (2017). Biological embedding of perinatal social relationships in infant stress reactivity. Developmental Psychobiology, 59, 425435. doi:10.1002/dev.21505Google Scholar
Thomas, J. C., Magel, C., Tomfohr-Madsen, L., Madigan, S., Letourneau, N., Campbell, T. S., & Giesbrecht, G. F. (2017). Adverse childhood experiences and HPA axis function in pregnant women: Investigating a biological pathway for the intergenerational transmission of stress. Unpublished manuscript.Google Scholar
Tomfohr-Madsen, L. M., Bayrampour, H., & Tough, S. (2016). Maternal history of childhood abuse and risk of asthma and allergy in 2-year-old children. Psychosomatic Medicine, 78, 10311042. doi:10.1097/PSY.0000000000000419Google Scholar
Trickett, P. K., Noll, J. G., Susman, E. J., Shenk, C. E., & Putnam, F. W. (2010). Attenuation of cortisol across development for victims of sexual abuse. Development and Psychopathology, 22, 165. doi:10.1017/S0954579409990332Google Scholar
van der Vegt, E. J., van der Ende, J., Kirschbaum, C., Verhulst, F. C., & Tiemeier, H. (2009). Early neglect and abuse predict diurnal cortisol patterns in adults: A study of international adoptees. Psychoneuroendocrinology, 34, 660669. doi:10.1016/j.psyneuen.2008.11.004Google Scholar
Vedhara, K., Metcalfe, C., Brant, H., Crown, A., Northstone, K., Dawe, K., … Smith, G. D. (2012). Maternal mood and neuroendocrine programming: Effects of time of exposure and sex. Journal of Neuroendocrinology, 24, 9991011. doi:10.1111/j.1365-2826.2012.02309.xGoogle Scholar
Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., … Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847854. doi:10.1038/nn1276Google Scholar
Wüst, S., Federenko, I., Hellhammer, D. H., & Kirschbaum, C. (2000). Genetic factors, perceived chronic stress, and the free cortisol response to awakening. Psychoneuroendocrinology, 25, 707720.Google Scholar
Yehuda, R., Bell, A., Bierer, L. M., & Schmeidler, J. (2008). Maternal, not paternal, PTSD is related to increased risk for PTSD in offspring of Holocaust survivors. Journal of Psychiatric Research, 42, 11041111. doi:10.1016/j.jpsychires.2008.01.002Google Scholar
Yehuda, R., Engel, S. M., Brand, S. R., Seckl, J., Marcus, S. M., & Berkowitz, G. S. (2005). Transgenerational effects of posttraumatic stress disorder in babies of mothers exposed to the World Trade Center attacks during pregnancy. Journal of Clinical Endocrinology & Metabolism, 90, 41154118. doi:10.1210/jc.2005-0550Google Scholar