Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T12:27:54.242Z Has data issue: false hasContentIssue false

Genetic, environmental, and epigenetic factors in the development of personality disturbance

Published online by Cambridge University Press:  14 October 2009

Richard A. Depue*
Affiliation:
Cornell University
*
Address correspondence and reprint requests to: Richard A. Depue, Laboratory of Neurobiology of Temperament and Personality, Department of Human Development, G22 MVR Hall, Cornell University, Ithaca, NY 14853; E-mail: rad5@cornell.edu.

Abstract

A dimensional model of personality disturbance is presented that is defined by extreme values on interacting subsets of seven major personality traits. Being at the extreme has marked effects on the threshold for eliciting those traits under stimulus conditions: that is, the extent to which the environment affects the neurobiological functioning underlying the traits. To explore the nature of development of extreme values on these traits, each trait is discussed in terms of three major issues: (a) the neurobiological variables associated with the trait, (b) individual variation in this neurobiology as a function of genetic polymorphisms, and (c) the effects of environmental adversity on these neurobiological variables through the action of epigenetic processes. It is noted that gene–environment interaction appears to be dependent on two main factors: (a) both genetic and environmental variables appear to have the most profound and enduring effects when they exert their effects during early postnatal periods, times when the forebrain is undergoing exuberant experience–expectant dendritic and axonal growth; and (b) environmental effects on neurobiology are strongly modified by individual differences in “traitlike” functioning of neurobiological variables. A model of the nature of the interaction between environmental and neurobiological variables in the development of personality disturbance is presented.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansorge, M., Zhou, M., Lira, A., Hen, R., & Gingrich, J. (2004). Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science, 306, 879881.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Rajkowski, J., Kubiak, P., Valentino, R., & Shiptley, M. (1996). Role of the locus coeruleus in emotional activation. In Holstege, G., Bandler, R., & Saper, C. (Eds.), The emotional motor system (pp. 254279). New York: Elsevier.Google Scholar
Barr, C., Schwandt, M., Lindell, S., Higley, J., Maestripieri, D., Goldman, D., et al. (2008). Variation at the mu-opioid receptor gene (OPRM1) influences attachment behavior in infant primates. Proceedings of the National Academy of Sciences of the United States of America, 105, 52775281.CrossRefGoogle ScholarPubMed
Blakemore, S.-J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9, 267277.CrossRefGoogle ScholarPubMed
Bond, C., LaForge, K. S., Tian, M., Melia, D., Zhang, S., Borg, L., et al. (1998). Single-nucleotide polymorphism in the human mu opioid receptor gene alters (β-endorphin binding and activity: Possible implications for opiate addiction. Proceedings of the National Academy of Sciences of the United States of America, 95, 96089613.CrossRefGoogle ScholarPubMed
Blizard, D. A. (1988). The locus ceruleus: A possible neural focus for genetic differences in emotionality. Experientia, 44, 491495.CrossRefGoogle ScholarPubMed
Canli, T. (2006). Genomic imaging of extraversion. In Canli, T. (Ed.), Biology of personality and individual differences (pp. 93115). New York: Guilford Press.Google Scholar
Canli, T. (2008). Toward a neurogenetic theory of neuroticism. Annals of the New York Academy of Sciences, 1129, 153174.CrossRefGoogle Scholar
Canli, T., & Lesch, K.-P. (2007). Long story short: The serotonin transporter in emotion regulation and social cognition. Nature Neuroscience, 10, 11031109.CrossRefGoogle ScholarPubMed
Carter, S., Lederhendler, I., & Kirkpatrick, B. (Eds.). (1997). The integrative neurobiology of affiliation. New York Academy of Sciences, 807, 901952.Google Scholar
Carver, C. S., & Miller, C. J. (2006). Relations of serotonin function to personality: Current views and a key methodological issue. Psychiatry Research, 144, 115.CrossRefGoogle Scholar
Caspi, A., McClay, J., Moffitt, T., Mill, J., & Marin, J. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.CrossRefGoogle ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T., Taylor, A., & Craig, I. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.CrossRefGoogle ScholarPubMed
Champagne, D., Bagot, R., Hasselt, F., Ramakers, G., Meaney, M., de Kloet, E., et al. (2008). Maternal care and hippocampal plasticity: Evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. Journal of Neuroscience, 28, 60376045.CrossRefGoogle ScholarPubMed
Champoux, M., Bennett, A., Shannon, C., Higley, J., Lesch, K., & Suomi, S. (2002). Serotonin transporter gene polymorphism, differential early rearing, and behavior in rhesus monkey neonates. Molecular Psychiatry, 7, 10581063.CrossRefGoogle ScholarPubMed
Charney, D. S., Grillon, C., & Bremner, D. (1998). The neurobiological basis of anxiety and fear: Circuits, mechanisms, and neurochemical interactions (Part I). Neuroscientist, 4, 3544.CrossRefGoogle Scholar
Cicchetti, D. (Ed.). (2007). Gene × Environment interactions and developmental psychopathology [Special Issue]. Development and Psychopathology, 19, 9571208.Google Scholar
Cicchetti, D., & Dawson, G. (Eds.). (2002). Multiple levels of analysis [Special Issue]. Development and Psychopathology, 14, 417666.Google Scholar
Coccaro, E., & Siever, L. (1991). Serotonin and psychiatric disorders. Washington, DC: American Psychiatric Association Press.Google Scholar
Craig, A. (2009). How do you feel—now? The anterior insula and human awareness. Nature Neuroscience, 10, 5970.CrossRefGoogle Scholar
Cushing, B., & Kramer, K. (2005). Mechanisms underlying epigenetic effects of early social experience: The role of neuropeptides and steroids. Neuroscience and Biobehavioral Reviews, 29, 10891105.CrossRefGoogle ScholarPubMed
Davis, M., & Shi, C. (1999). The extended amydala: Are the central nucleus of the amygdala and the bed nucleus of the stria terminalis differentially involved in fear versus anxiety. Annals of the New York Academy of Sciences, 877, 281291.CrossRefGoogle Scholar
Depue, R. (1995). Neurobiological factors in personality and depression. European Journal of Personality, 9, 413439.CrossRefGoogle Scholar
Depue, R. (2006). Interpersonal behavior and the structure of personality: Neurobehavioral foundation of agentic extraversion and affiliation. In Canli, T. (Ed.), Biology of personality and individual differences (pp. 6092). New York: Guilford Press.Google Scholar
Depue, R. A., & Collins, P. F. (1999). Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behavioral and Brain Sciences, 22, 491569.CrossRefGoogle ScholarPubMed
Depue, R., & Iacono, W. (1989). Neurobehavioral aspects of affective disorders. Annual Review of Psychology, 40, 457492.CrossRefGoogle ScholarPubMed
Depue, R. A., & Lenzenweger, M. F. (2005). A neurobehavioral dimensional model of personality disturbance. In Lenzenweger, M. & Clarkin, J. (Eds.), Major theories of personality disorders (2nd ed., pp. 391454). New York: Guilford Press.Google Scholar
Depue, R. A., & Morrone-Strupinsky, J. (2005). A neurobehavioral model of affiliative bonding: Implications for coneptualizing a human trait of affiliation. Behavioral and Brain Sciences, 28, 313395.CrossRefGoogle ScholarPubMed
Depue, R., & Spoont, M. (1986). Conceptualizing a serotonin trait: A behavioral dimension of constraint. Annals of the New York Academy of Sciences, 487, 4762.CrossRefGoogle ScholarPubMed
Deussing, J., & Wurst, W. (2005). Dissecting the genetic effect of the CRH system on anxiety and stress-related behaviour. Compte Rendu Biologies, 328, 199212.CrossRefGoogle ScholarPubMed
Drevets, W. C., Gautier, C., Price, J. C., Kupfer, D. J., Kinahan, P. E., Grace, A. A., et al. (2001). Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biological Psychiatry, 49, 8196.CrossRefGoogle ScholarPubMed
Eisenberger, N., & Lieberman, M. (2004). Why rejection hurts: A common neural alarm system for physical and social pain. Trends in Cognitive Sciences, 8, 294300.CrossRefGoogle ScholarPubMed
Fleming, A. S., Korsmit, M., & Deller, M. (1994). Rat pups are potent reinforcers to the maternal animal: Effects of experience, parity, hormones, and dopamine function. Psychobiology 22, 4453.CrossRefGoogle Scholar
Fleming, A. S., O'Day, D. H., & Kraemer, G. W. (1999). Neurobiology of mother–infant interactions: Experience and central nervous system plasticity across development and generations. Neuroscience and Biobehavioral Reviews, 23, 673685.CrossRefGoogle ScholarPubMed
Gaspar, P., Cases, O., & Maroteaux, L. (2003). The developmental role of serotonin: News from mouse molecular genetics. Nature Reviews Neuroscience, 4, 10021012.CrossRefGoogle ScholarPubMed
Gelernter, J., Kranzler, H., & Cubells, J. (1999). Genetics of two μ opioid receptor gene (OPRM1) exon I polymorphisms: Population studies, and allele frequencies in alcohol- and drug-dependent subjects. Molecular Psychiatry, 4, 476483.CrossRefGoogle ScholarPubMed
Gillespie, S., & Nemeroff, S. (2007). Corticotropin-releasing factor and the psychobiology of early-life stress. Current Directions in Psychological Science, 16, 8589.CrossRefGoogle Scholar
Gross, E., & Hen, R. (2004). Developmental origins of anxiety. Nature Reviews Neuroscience, 5, 545552.CrossRefGoogle ScholarPubMed
Habib, K., Weld, K., Rice, K., Pushkas, J., Champoux, M., Listwak, S., et al. (2000). Oral administration of a corticotropin-releasing hormone receptor antagonist significantly attentuates behavioral, neuroendocrine, and autonomic response to stress in primates. Proceedings of the National Academy of Sciences of the United States of America, 97, 60796084.CrossRefGoogle Scholar
Hariri, A. (2006). Genetically driven variation in serotonin function: Impact on amygdala reactivity and individual differences in fearful and anxious personality. In Canli, T. (Ed.), Biology of personality and individual differences (pp. 295316). New York: Guilford Press.Google Scholar
Heimer, L. (2003). A new anatomical framework for neuropsychiatric disorders and drug abuse. American Journal of Psychiatry, 160, 17261739.CrossRefGoogle ScholarPubMed
Hennig, J., Reuter, M., Netter, P., & Burk, C. (2005). Two types of aggression are differntially related to serotonergic activity and the A779C TPH polymorphism. Behavioral Neuroscience, 119, 1625.CrossRefGoogle Scholar
Johansen, J., & Fields, H. (2004). Glutamatergic activation of anterior cigulate cortex produces an aversive teaching signal. Nature Neuroscience, 7, 398403.CrossRefGoogle Scholar
Kalin, N., Shelton, S., & Davidson, R. (2004). The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. Journal of Neuroscience, 24, 55065515.CrossRefGoogle ScholarPubMed
Kalin, N., Shelton, S., Davidson, R., & Kelley, A. (2001). The primate amygdala mediates acute fear but not the behavioral and physiological components of anxious temperament. Journal of Neuroscience, 21, 20672074.CrossRefGoogle Scholar
Kendler, K., Aggen, S., Czajkowski, N., Røysamb, E., Tambs, K., Torgersen, S., et al. (2008). The structure of genetic and environmental risk factors for DSM-IV personality disorders. Archives of General Psychiatry, 65, 14381446.CrossRefGoogle ScholarPubMed
Kim, J., & Diamond, D. (2002). The stressed hippocampus, synaptic plasticity and lost memories. Nature Reviews Neuroscience, 3, 453462.CrossRefGoogle ScholarPubMed
Knutson, B., & Bhanji, J. (2006). Neural substrates for emotional traits?: The case of extraversion. In Canli, T. (Ed.), Biology of personality and individual differences (pp. 116132). New York: Guilford Press.Google Scholar
Lakatos, K., Nemoda, Z., Birkas, E., Ronai, Z., Kovacs, E., Ney, K., et al. (2003). Association of D4 dopamine receptor gene and serotonin transporter promoter polymorphisms with infants' response to novelty. Molecular Psychiatry, 8, 9097.CrossRefGoogle ScholarPubMed
Laviolette, S. R., Gallegos, R. A., Henriksen, S. J., & van der Kooy, D. (2004). Opiate state controls bi-directional reward signaling via GABA-A receptors in the ventral tegmental area. Nature Neuroscience, 10, 160169.CrossRefGoogle Scholar
LeDoux, J. (1998). The emotional brain. New York: Simon & Schuster.Google Scholar
Leonardo, A., & Hen, R. (2006). Genetics of affective and anxiety disorders. Annual Review of Psychology, 57, 117137.CrossRefGoogle ScholarPubMed
Lenzenweger, M. F., Johnson, M. D., & Willett, J. B. (2004). Individual growth curve analysis illuminates stability and change in personality disorder features: The Longitudinal Study of Personality Disorders. Archives of General Psychiatry, 61, 10151024.CrossRefGoogle ScholarPubMed
Leri, F., Flores, J., Rodaros, D., & Stewart, J. (2002). Blockade of stress-induced but not cocaine-induced reinstatement by infusion of noradrenergic antagonists into the bed nucleus of the stria terminalis or the central nucleus of the amygdala. Journal of Neuroscience, 22, 57135718.CrossRefGoogle ScholarPubMed
Lesch, K.-P., & Canli, T. (2006). 5-HT1A receptor and anxiety-related traits: Pharmacology, genetics, and imaging. In Canli, T. (Ed.), Biology of personality and individual differences (pp. 273294). New York: Guilford Press.Google Scholar
Liu, Q., Vrontou, S., Rice, F., Zylka, M., Dong, X., & Anderson, D. (2007). Molecular genetic visualization of a rare subset of unmyelinated sensory neurons that may detect gentle touch. Nature Neuroscience, 10, 946948.CrossRefGoogle ScholarPubMed
Livesley, W. J. (2001). Commentary on reconceptualizing personality disorder categories using trait dimensions. Journal of Personality, 69, 277286.CrossRefGoogle ScholarPubMed
Macey, D., Smith, H., Nader, M., & Porrino, L. (2003). Chronic cocaine self-administration upregulates the norepinephrine transporter and alters functional activity in the bed nucleus of the stria terminalis of the Rhesus monkey. Journal of Neuroscience, 23, 1216.CrossRefGoogle ScholarPubMed
Manuck, S., Flory, J., Ferrell, R., Dent, K., Mann, J., & Muldoon, M. (1999). Aggression and anger-related traits associated with a polymorphism of the tryptophan hydroxylase gene. Biological Psychiatry, 45, 603614.CrossRefGoogle ScholarPubMed
McArthur, S., Dalley, J., Buckingham, J., & Gillies, G. (2005). Altered mesencephalic dopaminergic populations in adulthood as a consequence of brief perinatal glucocorticoid exposure. Journal of Neuroendocrinology, 17, 475482.CrossRefGoogle ScholarPubMed
McDonald, A., Shammah-Lagnado, S., Shi, C., & Davis, M. (1999). Cortical afferents to the extended amygdala. Annals of New York Academy of Sciences, 877, 309338.CrossRefGoogle Scholar
Meaney, M. (2001). Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annual Review of Neuroscience, 24, 11611192.CrossRefGoogle Scholar
Meaney, M., Brake, W., & Cratton, A. (2002). Psychoneuroendocrinology, 27, 127138.CrossRefGoogle Scholar
Merali, Z., Michaud, D., McIntosh, J., Kent, P., & Anisman, H. (2003). Differential involvement of amygdaloid CRH system(s) in the salience and valence of the stimuli. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27, 12011212.CrossRefGoogle ScholarPubMed
Moles, A., Kieffer, B., & D'Amato, F. (2004). Deficit in attachment behavior in mice lacking the u-opioid receptor gene. Science, 304, 19831986.CrossRefGoogle Scholar
Munafo, M., Clark, T., Moore, L., Payne, E., Walton, R., & Flint, J. (2003). Genetic polymorphisms and personality in healthy adults: A systematic review and meta-analysis. Molecular Psychiatry, 8, 471484.CrossRefGoogle ScholarPubMed
Nie, Z., Schweitzer, P., Roberts, A., Madamba, S., Moore, S., & Siggins, G. (2004). Ethanol augments GABAergic transmission in the central amygdala via CRF1 receptors. Science, 303, 15121514.CrossRefGoogle ScholarPubMed
Olausson, H., Lamarre, Y., Backlund, H., Morin, C., Wallin, B. G., Starck, G., et al. (2002). Unmyelinated tactile afferents signal touch and project to insular cortex. Nature Neuroscience, 5, 900904.CrossRefGoogle ScholarPubMed
Oswald, L., Wong, D., McCaul, M., Zhou, Y., Kuwabara, H., Choi, L., et al. (2005). Relationships among ventral striatal dopamine release, cortisol secretion, and subjective responses to amphetamine. Neuropsychopharmacology, 30, 821832.CrossRefGoogle ScholarPubMed
Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. New York: Oxford University Press.CrossRefGoogle Scholar
Pezawas, L., Meyer-Lindenberg, A., Drabant, E., Verchinski, B., Munoz, K., Kolachana, B., et al. (2005). 5-HTTLPR polymorphism impacts human cingulate amygdala interactions. Nature Neuroscience, 8, 828834.CrossRefGoogle ScholarPubMed
Pruessner, J., Champagne, F., Meaney, M., & Dagher, A. (2004). Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: A positron emission tomography study using [11C]raclopride. Journal of Neuroscience, 24, 28252831.CrossRefGoogle Scholar
Redmond, D. E. (1987). Studies of the nucleus locus coeruleus in monkeys and hypotheses for neuropsychopharmacology. In Meltzer, J. Y. (Ed.), Psychopharmacology: The third generation of progress (pp. 967975). New York: Raven Press.Google Scholar
Rujescu, D., Giegling, I., Bondy, B., Gietl, A., Zill, P., & Moller, H.-J. (2002). Association of anger-related traits with SNPs in the TPH gene. Molecular Psychiatry, 7, 10231029.CrossRefGoogle ScholarPubMed
Reynolds, S. K., & Clark, L. A. (2001). Predicting dimensions of personality disorder from domains and facets of the five-factor model. Journal of Personality, 69, 199222.CrossRefGoogle ScholarPubMed
Sahuque, L., Kullberg, E., Mcgeehan, A., Kinder, J., Hicks, M., Blanton, M., et al. (2006). Anxiogenic and aversive effects of corticotropin releasing factor (CRF) in the bed nucleus of the stria terminalis in the rat: Role of CRF receptor subtypes. Psychopharmacology, 186, 122132.CrossRefGoogle ScholarPubMed
Sapolsky, R. (2004). Mothering style and methylation. Nature Neuroscience, 7, 791792.CrossRefGoogle ScholarPubMed
Saulsman, L. M., & Page, A. C. (2004). The five-factor model and personality disorder empirical literature: A meta-analytic review. Clinical Psychology Review, 23, 10551085.CrossRefGoogle ScholarPubMed
Schultz, W. (2007). Multiple dopamine functions at different time courses. Annual Review of Neuroscience, 30, 259288.CrossRefGoogle ScholarPubMed
Servatius, R., Beck, K., Moldow, R., Salameh, G., Tumminello, T., & Short, K. (2005). A stress-induced anxious state in male rats: Corticotropin-releasing hormone induces persistent changes in associative learning and startle reactivity. Biological Psychiatry, 57, 865872.CrossRefGoogle Scholar
Somerville, L., Heatherton, T., & Kelley, W. (2006). Anterior cingulate cortex responds differentially to expectancy violation and social rejection. Nature Neuroscience, 9, 10071008.CrossRefGoogle ScholarPubMed
Spoont, M. (1992). Modulatory role of serotonin in neural information processing: Implications for human psychopathology. Psychological Bulletin, 112, 330350.CrossRefGoogle ScholarPubMed
Taylor, S., Way, B., Walch, W., Hilmert, C., Lehman, B., & Eisenberger, N. (2006). Early family environment, current adversity, the serotonin transporter promotor polymorphism, and depressive symptomatology. Biological Psychiatry, 60, 671676.CrossRefGoogle Scholar
Tellegen, A., Lykken, D. T., Bouchard, T. J., Wilcox, K. J., Segal, N. L., & Rich, S. (1988). Personality similarity in twins reared apart and together. Journal of Personality and Social Psychology, 54, 10311039.CrossRefGoogle ScholarPubMed
Tellegen, A., & Waller, N. G. (1997). Exploring personality through test construction: Development of the multidimensional personality questionnaire. In Briggs, S. & Cheek, J. (Eds.), Personality measures: Development and evaluation (Vol. 1, pp. 3758). New York: JAI Press.Google Scholar
Tsankova, S., Renthal, D., Kumar, A., & Nestler, E. (2007). Epigenetic regulation in psychiatric disorders. Nature Reviews Neuroscience, 8, 355367.CrossRefGoogle ScholarPubMed
Tsetsenis, T., Ma, X.-H., Iacono, L., Beck, S., & Gross, C. (2007). Suppression of conditioning to ambiguous cues by pharmacogenetic inhibition of the dentate gyrus. Nature Neuroscience, 10, 896902.CrossRefGoogle ScholarPubMed
Uhl, G. R., Sora, I., & Wang, Z. (1999). The μ opiate receptor as a candidate gene for pain: Polymorphisms, variations in expression, nociception, and opiate responses. Proceedings of the National Academy of Sciences of the United States of America, 96, 77527755.CrossRefGoogle ScholarPubMed
Van den Oever, M., Goriounova, N., Li, K., Van der Schors, R., Binnekade, R., Schoffelmeer, A., et al. (2008). Prefrontal cortex AMPA receptor plasticity is crucial for cue-induced relapse to heroin-seeking. Nature Neuroscience, 11, 10531058.CrossRefGoogle ScholarPubMed
Volkow, N., Wang, G., Fischman, M., Foltin, R., Fowler, J., Abumrad, N., et al. (1997). Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature, 386, 827829.CrossRefGoogle ScholarPubMed
Weaver, I., Cervoni, N., Champagne, F., D'Alessio, A., Sharma, S., Seckl, J., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847853.CrossRefGoogle ScholarPubMed
White, T. L., & Depue, R. A. (1999). Differential association of traits of fear and anxiety with norepinephrine- and dark-induced pupil reactivity. Journal of Personality and Social Psychology, 77, 863877.CrossRefGoogle ScholarPubMed
Winstanley, C., Theobald, D., Dalley, J., & Robbins, T. (2005). Interactions between serotonin and dopamine in the control of implusive choice in rats: Therapeutic implications for impulse control disorders. Neuropsychopharmacology, 5, 114.Google Scholar
Zald, D., & Depue, R. (2001). Serotonergic modulation of positive and negative affect in psychiatrically healthy males. Personality and Individual Differences, 30, 7186.CrossRefGoogle Scholar
Zhang, D., Shao, C., Shao, M., Yan, P., Wang, Y., Liu, Y., et al. (2007). Effect of u-opioid receptor gene polymorphisms on heroin-induced subjective responses in a Chinese population. Biological Psychiatry, 61, 12441251.CrossRefGoogle Scholar
Zubieta, J.-K., Smith, Y., Bueller, J., Xu, Y., Kilbourn, M., Jewett, D., et al. (2001). Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science, 293, 311315.CrossRefGoogle ScholarPubMed
Zuckerman, M. (1994). An alternative five-factor model for personality. In Halverson, C., Kohnstamm, G., & Marten, R. (Eds.), The developing structure of temperament and personality from infancy to adulthood (pp. 3457). Mahwah, NJ: Erlbaum.Google Scholar