Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T14:16:20.702Z Has data issue: false hasContentIssue false

Neurobiological Differentiation of Primary and Secondary Language Acquisition

Published online by Cambridge University Press:  07 November 2008

Bob Jacobs
Affiliation:
University of California, Los Angeles

Extract

This paper examines language as a multimodal sensory enhancement system, integrating recent neuroanatomical and neurophysiological findings on the ontogenesis of neuronal structures with the generative concept of Universal Grammar (UG) for determination of fundamental differences between primary (PLA) and secondary (SLA) language acquisition. Substantial attention is given to general neurobiological principles such as experience expectant/dependent synaptogenesis, formational/organizational versus associational/reactive plasticity, characteristics of modular cortical organization, and general epigenetic qualities (e.g., intra- and interhemispheric competition, selective neuronal preservation, etc.) of the developing brain. Special emphasis is placed on neurobiological specializations relative to language (e.g., interhemispheric differences in dendritic arborization in Broca's area). The assumed innateness of UG is critically examined, with the neurobiological evidence indicating (a) the first language (L1) does not equal the second language (L2) neurobiologically, and (b) epigenetic factors contributing to PLA are often underestimated. The relevance of these conclusions for SLA is also briefly discussed.

Type
Articles
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arendt, H. (1977). The life of the mind: Thinking. New York: Harcourt Brace Jovanovich.Google Scholar
Baker, C. L., & McCarthy, J. J. (Eds.). (1981). The logical problem of language acquisition. Cambridge, MA: The MIT Press.Google Scholar
Ballard, D. H. (1986). Cortical connections and parallel processing: Structure and function. Behavioral and Brain Sciences, 9, 67120.CrossRefGoogle Scholar
Bickerton, D. (1984, 10). Evidence for a two-stage model of language from ontogeny and phytogeny. Paper presented at the workshop on ontogeny and human development. Tel-Aviv University, Israel.Google Scholar
Brown, J. W. (1982). Hierarchy and evolution in neurolinguistics. In Arbib, M. A., Caplan, D., & Marshall, J. C. (Eds.), Neural models of language processes (pp. 447467). New York: Academic.CrossRefGoogle Scholar
Brownell, H. H., Potter, H. H., Bihrle, A., & Gardner, H. (1986). Inference deficits in right brain-damage patients. Brain and Language, 27, 310321.CrossRefGoogle Scholar
Buchwald, J. S. (1986). Exploration of cognitive function with the “P300” event related potential. In Sato, M. (Ed.), Neural mechanism of cognitive function (pp. 6581). Bulletin of Tokyo Metropolitan Institute for Neurosciences Supplement.Google Scholar
Buell, S. J., & Coleman, P. D. (1981). Quantitative evidence for selective dendritic growth in normal human aging but not in senile dementia. Brain Research, 214, 2341.CrossRefGoogle ScholarPubMed
Butcher, L. L., & Woolf, N. J. (1986). Central cholinergic systems: Synopsis of anatomy and overview of physiology and pathology. In Scheibel, A. B. & Wechsler, A. F. (Eds.), The biological substrates of Alzheimer's Disease (pp. 7386). New York: Academic.Google Scholar
Caplan, D. (1981). On the cerebral localization of linguistic functions: Logical and empirical issues surrounding deficit analysis and functional localization. Brain and Language, 14, 120137.CrossRefGoogle ScholarPubMed
Carpenter, M. B., & Sutin, J. (1983). Human neuroanatomy. Baltimore: Williams & Wilkins.Google Scholar
Changeux, J-P. (1980). Genetic determinism and epigenesis of the neuronal network: Is there a biological compromise between Chomsky and Piaget? In Piattelli-Palmarini, M. (Ed.), Language and learning: The debate between Jean Piaget and Noam Chomsky (pp. 185200). Cambridge, MA: Harvard University Press.Google Scholar
Changeux, J-P. (1985). Neuronal man: The biology of mind. (Garey, L., Trans.). New York: Oxford University Press. (Original work published 1983)Google Scholar
Chipman, S. F. (1986). Integrating three perspectives on learning. In Friedman, S. L., Klivington, K. A., & Peterson, R. W. (Eds.), The brain, cognition, and education (pp. 203229). New York: Academic.CrossRefGoogle Scholar
Chomsky, N. (1965). Aspects on the theory of syntax. Cambridge, MA: The MIT Press.Google Scholar
Chomsky, N. (1981). Lectures on government and binding. Dordrecht: Foris.Google Scholar
Chomsky, N. (1985). Knowledge of language: Its nature, origin, and use. New York: Praeger.Google Scholar
Coleman, P. D., & Buell, S. J. (1985). Regulation of dendritic extent in developing and aging brain. In Colman, C. W. (Ed.), Synoptic plasticity (pp. 311333). New York: Guilford.Google Scholar
Conel, J. L. (1939; 1967). The postnatal development of the human cerebral cortex. Vols. I & VII. Cambridge, MA: Harvard University Press.Google Scholar
Cook, V. J. (1985). Universal Grammar and second language learning. Journal of Applied Linguistics, 6, 218.CrossRefGoogle Scholar
Diamond, M. C., Johnson, R. E., Protti, A. M., Ott, C., & Kajisa, L. (1985). Plasticity in the 904 day-old male rat cerebral cortex. Experimental Neurology, 87, 309317.CrossRefGoogle ScholarPubMed
Diamond, M. C., Rosenzweig, M. R., Bennett, E. L., Lindner, B., & Lyon, L. (1972). Effects of environmental enrichment and impoverishment on rat cerebral cortex. Journal of Neurobiology, 3, 4764.CrossRefGoogle ScholarPubMed
Ehret, G. (1987). Left hemisphere advantage m the mouse brain for recognizing ultrasonic communication calls. Nature, 325, 249251.CrossRefGoogle Scholar
Eimas, P. D. (1984). Infant competence and the acquisition of language. In Caplan, D., Lecours, A. R., & Smith, A. (Eds.), Biological perspectives on language (pp. 109129). Cambridge, MA: The MIT Press.Google Scholar
Ervin-Tripp, S. M. (1974). Is second language learning like the first? TESOL Quarterly, 8, 111128.CrossRefGoogle Scholar
Felix, S. (1984). Maturational aspects of Universal Grammar. In Davies, A., Criper, C., & Howatt, A. P. R. (Eds.), Interlanguage (pp. 133161). Edinburgh: Edinburgh University Press.Google Scholar
Fentress, J. C. (1983). Hierarchical motor control. In Studdert-Kennedy, M. (Ed.), Psychobiology of language (pp. 4061). Cambridge, MA: The MIT Press.Google Scholar
Fromkin, V. A. (1985). Implications of hemispheric differences for linguistics. In Benson, D. F. & Zaidel, E. (Eds.), The dual brain (pp. 319327). New York: Guilford.Google Scholar
Furrow, D., Nelson, K., & Benedict, H. (1979). Mothers' speech to children and syntactic relationships. Journal of Child Language, 6, 423442.CrossRefGoogle Scholar
Fuster, J. M. (1986). Role of association cortex in perception and memory. In Sato, M. (Ed.), Neural mechanism of cognitive function (pp. 4963). Bulletin of Tokyo Metropolitan Institute for Neurosciences Supplement.Google Scholar
Geschwind, N. (1984). Neural mechanisms, aphasia, and theories. In Caplan, D., Lecours, A. R., & Smith, A. (Eds.), Biological perspectives on language (pp. 3139). Cambridge, MA: The MIT Press.Google Scholar
Goldman-Rakic, P. S. (1986). Setting the stage: Neural development before birth. In Friedman, S. L., Klivington, K. A., & Peterson, R. W. (Eds.), The brain, cognition, and education (pp. 233258). New York: Academic.CrossRefGoogle Scholar
Goodglass, H. (1983). A neuropsychological approach. In Studdert-Kennedy, M. (Ed.), Psychobiology of language (pp. 2025). Cambridge, MA: The MIT Press.Google Scholar
Greenough, W. T., & Chang, F-L. F. (1985). Synaptic structural correlates of information storage in mammalian nervous systems. In Cotman, C. W. (Ed.), Synaptic plasticity (pp. 335372). New York: Guilford.Google Scholar
Greenough, W. T., & Volkmar, F. R. (1973). Pattern of dendritic branching in occipital cortex of rats reared in complex environments. Experimental Neurology, 40, 491504.CrossRefGoogle ScholarPubMed
Greenough, W. T., Volkmar, F. R., & Juraska, J. M. (1973). Effects of rearing complexity on dendritic branching in frontolateral and temporal cortex of the rat. Experimental Neurology, 41, 371378.CrossRefGoogle ScholarPubMed
Harwerth, R. S., Smith, E. L. III, Duncan, G. C., Crawford, M. L. J., & von Noorden, G. K. (1986). Multiple sensitive periods in the development of the primate visual system. Science, 232, 235238.CrossRefGoogle ScholarPubMed
Hornstein, N., & Lightfoot, D. (Eds.). (1981). Explanation in linguistic theory. London: Longman.Google Scholar
Hubel, D. H., & Wiesel, T. N. (1979). Brain mechanisms of vision. Scientific American, 241, 150162.CrossRefGoogle ScholarPubMed
Hyams, N. (1986). Language acquisition and the theory of parameters. Dordrecht, Holland: D. Reidel.CrossRefGoogle Scholar
Jerison, H. J. (1986). The perceptual worlds of dolphins. In Schusterman, R. J., Thomas, J. A., & Wood, F. G. (Eds.), Dolphin cognition and behavior: A comparative approach (pp. 141166). Hillsdale, NJ: Erlbaum.Google Scholar
John, E. R., Tang, Y., Brill, A. B., Young, R., & Ono, K. (1986). Double-labeled metabolic maps of memory. Science, 233, 11671175.CrossRefGoogle ScholarPubMed
Jones, E. G. (1981). Development of connectivity in the cerebral cortex. In Cowan, W. M. (Ed.), Studies in developmental neurobiology: Essays in honor of Viktor Hamburger (pp. 354394). London: Oxford University Press.Google Scholar
Kandel, E. R. (1985a). Processing of form and movement in the visual system. In Kandel, E. R. & Schwartz, J. H. (Eds.), Principles of neural science (pp. 366383). New York: Elsevier.Google Scholar
Kandel, E. R. (1985b). Synapse formation, trophic interactions between neurons, and the development of behavior. In Kandel, E. R. & Schwartz, J. H. (Eds.), Principles of neural science (pp. 743756). New York: Elsevier.Google Scholar
Kandel, E. R., & Schwartz, J. H. (Eds.). (1985). Principles of neural science. New York: Elsevier.Google Scholar
Klein, W. (1986). Second language acquisition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kramer, A. (1980). The languages of linguistic theory: Aesthetic dimensions of a scientific discipline. Unpublished doctoral dissertation, University of Michigan.Google Scholar
Kuffler, S. W., Nicholls, J. G., & Martin, R. A. (1984). From neuron to brain: A cellular approach to the function of the nervous system. Sunderland, MA: Smauer Associates.Google Scholar
Kuhl, P. K., & Meltzoff, A. N. (1984). The intermodal representation of speech in infants. Infant Behavior and Development, 7, 361381.CrossRefGoogle Scholar
Lamendella, J. T. (1977). General principles of neurofunctional organization and their manifestation in primary and nonprimary language acquisition. Language Learning, 27, 155196.CrossRefGoogle Scholar
LeVay, S., Wiesel, T. N., & Hubel, D. H. (1980). The development of ocular dominance columns in normal and visually deprived monkeys. Journal of Comparative Neurology, 191, 151.CrossRefGoogle ScholarPubMed
Levelt, W. J. M. (1975). What became of LAD? Peter de Ridder Publications in Cognition I. Lisse, Holland: Peter de Ritter.Google Scholar
Li, J. (1987, Winter). On the relevance of UG to second language acquisition. Unpublished manuscript, English 597, University of California, Los Angeles.Google Scholar
Liberman, M. Y. (1983). A linguistic approach. In Studdert-Kennedy, M. (Ed.), Psychobiology of language (pp. 715). Cambridge, MA: The MIT Press.Google Scholar
Lieberman, P. (1984). The biology and evolution of language. Cambridge, MA: Harvard University Press.Google Scholar
Lightfoot, D. (1983). The language lottery: Toward a biology of grammars. Cambridge, MA: MIT Press.Google Scholar
Lorber, J. (1980). Is your brain really necessary? Research news. Science, 210, 12321234.Google Scholar
Macagno, E. R., Lopresti, U., & Levinthal, C. (1973). Structural development of neuronal connections in isogenic organisms: Variations and similarities in the optic system of Daphnia magna. Proceedings of the National Academy of Science [USA], 70, 5761.CrossRefGoogle ScholarPubMed
Marshall, J. C. (1980). On the biology of language acquisition. In Captan, D. (Ed.), Biological studies of mental processes (pp. 106147). Cambridge, MA: The MIT Press.Google Scholar
Mayeux, R., & Kandel, E. R. (1985). Natural language, disorders of language, and other localizable disorders of cognitive functioning. In Kandel, E. R. & Schwartz, J. H. (Eds.), Principles of neural science, 2nd ed., (pp. 688703). New York: Elsevier.Google Scholar
McLaughlin, B. (1987). Theories of second-language learning. London: Edward Arnold.Google Scholar
Mountcastle, V. B. (1979). An organizing principle for cerebral function: The unit module and the distnbuted system. In Schmitt, F. O. & Worden, F. G. (Eds.), The neurosciences fourth study program (pp. 2142). Cambridge, MA: The MIT Press.Google Scholar
Netsell, R. (1986). A neurobiologie view of speech production and the dysarthrias. San Diego, CA: College-Hill.Google Scholar
Newport, E., Gleitman, H., & Gleitman, L. H. (1977). Mother, I'd rather do it myself: Some effects and non-effects of maternal speech style. In Snow, C. E. & Ferguson, C. A. (Eds.), Talking to children: Language input and acquisition. Cambridge: Cambridge University Press.Google Scholar
Obler, L. K. (1984). The neuropsychology of bilingualism. In Caplan, D., Lecours, A. R., & Smith, A. (Eds.), Biological perspectives on language (pp. 194210). Cambridge, MA: The MIT Press.Google Scholar
Obler, L. K. (1987, 10). Exceptional second language learners. Paper presented at Variation in Second Language Acquisition Conference, Ann Arbor.Google Scholar
Ojemann, G. (1983). Brain organization for language from the perspective of electrical stimulation mapping. The Behavioral and Brain Sciences, 6, 189230.CrossRefGoogle Scholar
Ojemann, G., & Whitaker, H. (1978). The bilingual brain. Archives of Neurology, 35, 409412.CrossRefGoogle ScholarPubMed
Penfield, W., & Roberts, L. (1959). Speech and brain-mechanisms. New Jersey: Princeton University Press.Google Scholar
Petersen, M. R., Beecher, M. D., Zoloth, S. R., Green, S., Moody, D. B., Marier, P. R., & Stebbins, W. C. (1984). Neural lateralization of vocalizations by Japanese macaques: Communicative significance is more important than acoustic structure. Behavioral Neuroscience, 98, 779790.CrossRefGoogle ScholarPubMed
Piattelli-Palmarini, M. (Ed.). (1980). Language and learning: The debate between Jean Piaget and Noam Chomsky. Cambridge, MA: Harvard University Press.Google Scholar
Popper, K. R., & Eccles, J. C. (1981). The self and its brain. New York: Springer International.Google Scholar
Renner, M. J., & Rosenzweig, M. R. (1987). Enriched and impoverished environments: Effects on brain and behavior. New York: Springer-Verlag.CrossRefGoogle Scholar
Sarles, H. B. (1977). Language and human nature. Minneapolis: University of Minnesota Press.Google Scholar
Scheibel, A. B. (1979). Development of axonal and dendritic neuropil as a function of evolving behavior. In Schmitt, F. O. & Worden, F. G. (Eds.), The neurosciences fourth study program (pp. 381398). Cambridge, MA: The MIT Press.Google Scholar
Scheibel, A. B. (1987). On dendritic correlates of human cortical function. Unpublished manuscript.Google Scholar
Scheibel, A. B., Paul, L. A., Fried, I., Forsythe, A. B., Tomiyasu, U., Wechsler, A., Kao, A., & Slotnick, J. (1985). Dendritic organization of the anterior speech area. Experimental Neurology, 87, 109117.CrossRefGoogle ScholarPubMed
Scheibel, M. A., Davies, T. L., Lindsay, R. D., & Scheibel, A. B. (1974). Basilar dendrite bundles of giant pyramidal cells. Experimental Neurology, 42, 307319.CrossRefGoogle ScholarPubMed
Scheibel, M. A., & Scheibel, A. B. (1966). Patterns of organization in specific and nonspecific thalamic fields. In Purpura, D. & Yahr, M. D. (Eds.), The thalamus (pp. 1346). New York: Columbia University Press.Google ScholarPubMed
Scheibel, M. A., & Scheibel, A. B. (1976). Some thoughts on the ontogeny of memory and learning. In Rosenzweig, M. R. & Bennett, E. L. (Eds.), Neural mechanisms of learning and memory (pp. 241252). Cambridge, MA: The MIT Press.Google Scholar
Schumann, J. (1978). The pidginization hypothesis: A model for second language acquisition. Rowley, MA: Newbury House.Google Scholar
Seldon, H. L. (1985). The anatomy of speech perception: Human auditory cortex. In Peters, A. & Jones, E. G. (Eds.), Cerebral cortex (Vol. 4, pp. 273327). New York: Plenum Press.Google Scholar
Selinker, L., & Lamendella, J. (1978). Two perspectives on fossilization in interlanguage learning. Interlanguage Studies Bulletin, 3, 143191.Google Scholar
Selkirk, E. O. (1984). Phonology and syntax: The relation between sound and structure. Cambridge, MA: The MIT Press.Google Scholar
Shatz, M. (1982). On mechanisms of language acquisition: Can features of the communicative environment account for development? In Wanner, E. & Gleitman, L. R. (Eds.), Language acquisition: The state of the art (pp. 102127). Cambridge: Cambridge University Press.Google Scholar
Sillito, A. M., Salt, T. E., & Kemp, J. A. (1985). Modulatory and inhibitory processes in the visual cortex. Vision Research, 25, 375381.CrossRefGoogle ScholarPubMed
Simonds, R. J. (1987). Post-natal development of speech related cortices: A Golgi study. Unpublished doctoral dissertation, University of California, Los Angeles.Google Scholar
Slobin, D. (1975). On the nature of talk to children. In Lenneberg, E. H. & Lenneberg, E. (Eds.), Foundations of language development. New York: Academic.Google Scholar
Sperry, R. W. (1980). Mind-brain interaction: Mentalism, yes; dualism, no. Neuroscience, 5, 195206.CrossRefGoogle Scholar
Szentagothai, J. (1971). Memory functions and the structural organization of the brain. Symposia Biologica Hungariea, 10, 2135.Google Scholar
Tollefson, J. W., & Firn, J. T. (1983). Fossilization in second language acquisition: An intermodel view. RELC Journal, 14, 1934.CrossRefGoogle Scholar
Van Lancker, D. (1985). Hemispheric contributions to language and communication. In Darby, J. K. (Ed.), Speech and language evaluation in neurology: Adult disorders (pp. 247295). New York: Grune & Stratton.Google Scholar
von Economo, C., & Koskinas, G. N. (1925). Die Cytoarchitektonik der Hirnrinde des Erwachsenen Menschen [The cytoarchitectonics of adult human cortex]. Berlin: Springer.Google Scholar
Wapner, W., Hamby, S., & Gardner, H. (1981). The role of the right hemisphere in the apprehension of complex linguistic materials. Brain and Language, 14, 1533.CrossRefGoogle ScholarPubMed
Watzlawick, P., Beavin, J. H., & Jackson, D. D. (1967). Pragmatics of human communication: A study of interactional patterns, pathologies, and paradoxes. New York: W. W. Norton.Google Scholar
Wexler, K., & Culicover, P. W. (1980). Formal principles of language acquisition. Cambridge, MA: The MIT Press.Google Scholar
White, L. (1981). The responsibility of grammatical theory to acquisitional data. In Hornstein, N. & Lightfoot, D. (Eds.), Explanation in linguistic theory (pp. 241283). London: Longman.Google Scholar
Withers, G. S., & Greenough, W. T. (1987). Differential plasiticity between two subtypes of pyramidal cells in the motor-sensory forelimb cortex as a consequence of reach training. Society for Neuroscience Abstracts. 17th Annual Meeting, New Orleans, LA. 13:(3), Abstract No. 441.14.Google Scholar