Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T19:21:28.257Z Has data issue: false hasContentIssue false

A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts

Published online by Cambridge University Press:  03 November 2011

Victor Herreros
Affiliation:
Dpt. Petrología y Geoquímica, Fac. C. C. Geológicas, Universidad Complutense, 28040 Madrid, Spain; e-mail: granito@eucmax.sim.ucm.es Dpt. Geología, Fac. C. C. del Mar, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain; e-mail:luis.barbero@uca.es

Abstract

Conventional rock classification diagrams do not distinguish the variety of peraluminous rock series. Moreover, peraluminous granite types have not been clearly discriminated in recent revisions. The study of several peraluminous series in different intracontinental orogenic belts reveals that four distinct groups can be defined. Using an A-B diagram, these four groups are: (1) highly peraluminous granitoids (hP) characterised by high A values and typified by an increase in peraluminosity toward the most mafic varieties; (2) moderately peraluminous granitoids (mP) which occupy the intermediate field and generally show increasing peraluminosity towards the most felsic varieties; (3) low peraluminous granitoids (IP) which plot in the lowest part of the peraluminous field defining negative slope trends; (4) highly felsic peraluminous granites (fP) with poorly defined variation trends.

In intracontinental orogenic belts, the genesis of peraluminous granitic series is favoured by the abundance of fertile crustal protoliths, mainly metapelites, metaigneous rocks and metagreywackes. The difficulty of attaining temperatures in excess of 950°C at lower crustal levels during the tectonothermal evolution of thickened crust, inhibits the partial melting of more basic sources. Although the physical parameters of the melting process influence their chemical and mineralogical characteristics, source rock composition ultimately determines the degree of peraluminosity of the granitic series.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbarin, B. 1996. Genesis of the two main types of peraluminous granitoids. Geology 24, 2958.2.3.CO;2>CrossRefGoogle Scholar
Barbero, L.Villaseca, C. 1992. The Layos granite, Hercynian Complex of Toledo Spain: an example of parautochthonous restite-rich granite in a granulite area. Transactions of the Royal Society of Edinburgh: Earth Sciences 83, 12738.CrossRefGoogle Scholar
Barker, F., Arth, J. G. 1990. Two traverses across the Coast batholith, southeastern Alaska. In Anderson, J. L. (ed.) The nature and origin of Cordilleran magmatism. Geological Society of America Memoir 174, 395405.CrossRefGoogle Scholar
Bateman, P. C., Clarke, L. D., Huber, N. K., Moore, J. G.Rinehart, C. D. 1963. The Sierra Nevada batholith: A synthesis of recent work across the central part. U.S. Geological Survey Professional Paper 414-D.CrossRefGoogle Scholar
Beard, J. S.Lofgren, G. E. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3 and 6.9 kb. Journal of Petrology 32, 365401.CrossRefGoogle Scholar
Beard, J. S., Abitz, R. J., Lofgren, G. E. 1993. Experimental melting of crustal xenoliths from Kilbourne Hole, New Mexico and implications for the contamination and genesis of magmas. Contributions to Mineralogy and Petrology 115, 88102.CrossRefGoogle Scholar
Chappell, B. W.White, A. J. R. 1974. Two contrasting granite types. Pacific Geology 8, 1734.Google Scholar
Chappell, B. W.White, A. J. R. 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences 83, 126.CrossRefGoogle Scholar
Chappell, B. W., White, A. J. R.Williams, I. S. 1991. A transverse section through granites of the Lachlan Fold Belt: Second Hutton Symposium Excursion Guide. Record 1991/22 BMR, Canberra.Google Scholar
Clark, R. G., Lyons, J. B. 1986. Petrogenesis of the Kinsman intrusive suite: peraluminous granitoids of western New Hampshire. Journal of Petrology 27, 136593.CrossRefGoogle Scholar
Clemens, J. D.Wall, V. J. 1981. Crystallization and origin of some peraluminous S-type granite magmas. Canadian Mineralogist 19, 11132.Google Scholar
Conrad, W. K., Nicholls, I. A.Wall, V. J. 1988. Water-saturated and -undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of silicic magmas in the Taupo volcanic zone, New Zealand, and other occurrences. Journal of Petrology 29, 765803.CrossRefGoogle Scholar
Debon, F.Le Fort, P. 1983. A chemical-mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh: Earth Sciences 73, 13549.CrossRefGoogle Scholar
Ellis, D. J.Thompson, A. B. 1986. Subsolidus and partial melting reactions in the quartz-excess CaO + MgO + Al2O3 + SiO2 + H2O system under water-excess and water-deficient conditions to 10 kb: some implications for the origin of peraluminous melts from mafic rocks. Journal of Petrology 27, 91121.CrossRefGoogle Scholar
Gardien, V., Thompson, A. B., Grujic, D.Ulmer, P. 1995. Experimental melting biotite + plagioclase + quartz muscovite assemblages and implications for crustal melting. Journal of Geophysical Research 100, B8, 1558191.CrossRefGoogle Scholar
Hine, R., Williams, I. S., Chappell, B. W.White, A. J. R. 1978. Contrasts between I- and S-type granitoids of the Kosciusko Batholith. Journal of the Geological Society of Australia 25, 21934.CrossRefGoogle Scholar
Holtz, F. 1989. Importance of melt fraction and source rock composition in crustal genesis—the example of two granitic suites of northern Portugal. Lithos 24, 2135.CrossRefGoogle Scholar
Holtz, F.Barbey, P. 1991. Genesis of peraluminous granites II. Mineralogy and chemistry of the Tourem Complex, North Portugal. Sequential melting vs. restite unmixing. Journal of Petrology 32, 95978.CrossRefGoogle Scholar
Holtz, F.Johannes, W. 1991. Genesis of peraluminous granites I. Experimental investigation of melt compositions at 3 and 5 kb and various H2O activities. Journal of Petrology 32, 93558.CrossRefGoogle Scholar
Lameyre, J. 1988. Granite settings and tectonics. Rendiconti delta Societd Italiana di Mineralogia e Petrologia 43, 21536.Google Scholar
Le Fort, P., Cuney, M., Deniel, C., France-Lanord, C., Sheppard, S. M. F., Upreti, B. N.Vidal, P. 1987. Crustal generation of the Himalayan leucogranites. Tectonophysics 134, 3957.CrossRefGoogle Scholar
Leger, J. M., Wang, X.Lameyre, J. 1990. Les leucogranites de Saint-Goussaud en Limousin: pétrographie, éléments majeurs et traces dans le sondage de Villechabrolle (project Energeroc). Bulletin de la Societé Géologique de la France VI, 51524.CrossRefGoogle Scholar
Liew, T. C., Finger, F.Hock, V. 1989. The Moldanubian granitoid plutons of Austria: chemical and isotopic studies bearing on their environmental setting. Chemical Geology 76, 4155.CrossRefGoogle Scholar
Maniar, P. D.Piccoli, P. M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin 101, 63543.2.3.CO;2>CrossRefGoogle Scholar
McCarthy, T. C.Douce, Patiño A. E. 1997. Experimental evidence for high temperature felsic melts formed during basaltic intrusion of the deep crust. Geology 25, 4636.2.3.CO;2>CrossRefGoogle Scholar
Miller, C. F. 1985. Are strongly peraluminous magmas derived from pelitic sedimentary sources? Journal of Geology 93, 67389.CrossRefGoogle Scholar
Nachit, H., Razafimahefa, N., Stussi, J. M.Carron, J. P. 1985. Composition chimique des biotites et typologie magmatique des granitoïes. Comptes Rendus à l'Academie des Sciences de Paris 301, 81317.Google Scholar
Patiño, Douce A. E.Beard, J. S. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Journal of Petrology 36, 70738.Google Scholar
Patiño, Douce A. E.Beard, J. S. 1996. Effect of P,∼O2 and Mg/Fe ratio on dehydration melting of model metagreywackes. Journal of Petrology 37, 9991024.CrossRefGoogle Scholar
Patiño, Douce A. E.Johnston, D. A. 1991. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology 107, 20218.CrossRefGoogle Scholar
Petford, N.Atherton, M. 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. Journal of Petrology 37, 1491521.CrossRefGoogle Scholar
Pichavant, M., Kontak, D. J., Briqueu, L., Valencia-Herrera, J.Clark, A. H. 1988. The Miocene-Pliocene Macusani volcanics, SE Perú II. Geochemistry and origin of a felsic peraluminous magma. Contributions to Mineralogy and Petrology 100, 32538.CrossRefGoogle Scholar
Pitcher, W. S. 1983. Granite type and tectonic environment. In Hsu, K. J. (ed.) Mountain Building Processes, 1940. London: Academic Press.Google Scholar
Pitcher, W. S. 1993. The Nature and Origin of Granites, 1st edn. London: Chapman and Hall.CrossRefGoogle Scholar
Pitcher, W. S., Atherton, M. P., Cobbing, E. J.Beckinsale, R. D. 1985. Magmatism at a Plate Edge: The Peruvian Andes. Glasgow: Blackie.CrossRefGoogle Scholar
Rogers, J. J. W.Greenberg, J. K. 1990. Late-orogenic, post-orogenic, and anorogenic granites: distinction by major-element and trace-element chemistry and possible origins. Journal of Geology 98, 291309.CrossRefGoogle Scholar
Saleeby, J. B., Kistler, R. W., Longiaru, S., Moore, J. G., Nokleberg, W. J. 1990. Middle Cretaceous silicic metavolcanic rocks in the Kings Canyon area, central Sierra Nevada, California. In Anderson, J. L. (ed.). The nature and origin of Cordilleran magmatism. Geological Society of America Memoir 174, 25170.CrossRefGoogle Scholar
Shand, S. J. 1927. The eruptive rocks. New York: Van Nostrand.Google Scholar
Shimura, T., Komatsu, M.Iiyama, J. T. 1992. Genesis of the lower crustal garnet-orthopyroxene tonalities (S-type) of the Hidaka Metamorphic Belt, northern Japan. Transactions of the Royal Society of Edinburgh: Earth Sciences 83, 25968.CrossRefGoogle Scholar
Springer, W.Seek, H. A. 1997. Partial fusion of basic granulites at 5 to 15 kbar: implications for the origin of TTG magmas. Contributions to Mineralogy and Petrology 127, 3045.CrossRefGoogle Scholar
Stussi, J. M.Cuney, M. 1993. Modèles d'évolution géochimie de granito'ides peralumineux. L'exemple du complexe plutonique varisque du Millevaches Massif central franäais. Bulletin de la Société Géologique de la France 164, 58596.Google Scholar
Thompson, A. B.Connolly, J. A. D. 1995. Melting of the continental crust: Some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. Journal of Geophysical Research 100, B8, 1556579.CrossRefGoogle Scholar
Vielzeuf, D.Holloway, J. R. 1988. Experimental determination of the fluid-absent melting relations in the pelitic system. Consequences for crustal differentiation. Contributions to Mineralogy and Petrology 98, 25776.CrossRefGoogle Scholar
Villaseca, C.Barbero, L. 1994. Chemical variability of Al-Ti-Fe-Mg minerals in peraluminous granitoid rocks from Central Spain. European Journal of Mineralogy 6, 691710.CrossRefGoogle Scholar
Villaseca, C., Barbero, L.Rogers, G. 1998. Crustal origin of Hercynian peraluminous granitic batholiths of Central Spain: petrological, geochemical and isotopic (Sr, Nd) constraints. Lithos 43, 5579.CrossRefGoogle Scholar
Wedepohl, K. H. 1991. Chemical composition and fractionation of the continental crust. Geologische Rundschau 80, 20723.CrossRefGoogle Scholar
Whalen, J. B. 1985. Geochemistry of an island-arc plutonic suite: the Uasilau-Yau Yau intrusive complex, New Britain, P.N.G. Journal of Petrology 26, 60332.CrossRefGoogle Scholar
White, A. J. R.Chappell, B. W. 1988. Some supracrustal (S-type) granites of the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences 79, 16981.CrossRefGoogle Scholar
White, A. J. R., Williams, I. S.Chappell, B. W. 1977. Geology of the Berridale 1:100000 Sheet (8625). Sydney: Geological Survey NSW.Google Scholar
Wickham, S. M. 1987. Crustal anatexis and granite petrogenesis during low-pressure regional metamorphism: The Trois Siegneurs Massif, Pyrenees, France. Journal of Petrology 28, 12769.CrossRefGoogle Scholar
Williamson, B. J., Downes, H., Thirwall, M. F.Beard, A. 1997. Geochemical constraints on restite composition and unmixing in the Velay anatectic granite, French Massif Central. Lithos 40, 295319.CrossRefGoogle Scholar
Wolf, M. B.Wyllie, P. J. 1994. Dehydration melting of amphibolite at 10 kbar: the effects of temperature and time. Contributions to Mineralogy and Petrology 115, 36983.CrossRefGoogle Scholar