Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T01:17:14.024Z Has data issue: false hasContentIssue false

Impedance control using electron beam diode in intense pulsed-power generator

Published online by Cambridge University Press:  18 March 2015

Ryota Hayashi*
Affiliation:
Department of Energy and Environment Science, Nagaoka University of Technology, Nagaoka, Japan
Tomoaki Ito
Affiliation:
Department of Electrical Engineering, Nagaoka University of Technology, Nagaoka, Japan
Fumihiro Tamura
Affiliation:
Department of Electrical Engineering, Nagaoka University of Technology, Nagaoka, Japan
Takahiro Kudo
Affiliation:
Department of Electrical Engineering, Nagaoka University of Technology, Nagaoka, Japan
Naoto Takakura
Affiliation:
Department of Electrical Engineering, Nagaoka University of Technology, Nagaoka, Japan
Kenji Kashine
Affiliation:
Department of Electrical and Electronic Engineering, National Institute of Technology, Kagoshima College, Kirishima, Japan
Kazumasa Takahashi
Affiliation:
Department of Electrical Engineering, Nagaoka University of Technology, Nagaoka, Japan
Toru Sasaki
Affiliation:
Department of Electrical Engineering, Nagaoka University of Technology, Nagaoka, Japan
Takashi Kikuchi
Affiliation:
Department of Electrical Engineering, Nagaoka University of Technology, Nagaoka, Japan Department of Nuclear System Safety Engineering, Nagaoka University of Technology, Nagaoka, Japan
Nob Harada
Affiliation:
Department of Electrical Engineering, Nagaoka University of Technology, Nagaoka, Japan
Weihua Jiang
Affiliation:
Extreme Energy-Density Research Institute, Nagaoka University of Technology, Japan
Akira Tokuchi
Affiliation:
Extreme Energy-Density Research Institute, Nagaoka University of Technology, Japan Pulsed Power Japan Laboratory Ltd., Kusatsu, Japan
*
Address correspondence and reprint requests to: Ryota Hayashi, Nagaoka University of Technology, Nagaoka, 940-2188, Japan. E-mail: r_hayashi@stn.nagaokaut.ac.jp

Abstract

To control an input energy for a load, an impedance control with a gap distance of an electron beam diode was studied using an intense pulsed-power generator. The output current of the pulsed-power generator as a function of the gap distance of electron beam diode was measured. It indicated that the behaviors of the experimentally obtained peak current and the theoretically obtained space-charge limited current were found to decrease with an increase in the gap distance. The input energy for the load was estimated from the output current, which decreased with an increase in the gap distance. It also revealed the space-charge limited current suppresses the input energy for the load with a decade.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdullin, E.N., Ivanov, N.G., Losev, V.F. & Morozov, A.V. (2013). Generation of a large cross-section electron beam in the vacuum diode with rod current returns. Laser Part. Beams 31, 697702.CrossRefGoogle Scholar
Amano, Y., Miki, Y., Takahashi, T., Sasaki, T., Kikuchi, T. & Harada, N. (2012). Isochoric heating of foamed metal using pulsed power discharge as a making technique of warm dense matter. Rev. Sci. Instrum. 83, 085107.CrossRefGoogle ScholarPubMed
Atzeni, S. & Meyer-Ter-vehn, J. (2004). Hohlraum targets. In The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, pp. 302322. New York: Oxford University Press.CrossRefGoogle Scholar
Clérouin, J., Noiret, P., Blottiau, P., Recoules, V., Siberchicot, B., Renaudin, P., Blancard, C., Faussurier, G., Holst, B. & Starrett, C.E. (2012). A database for equations of state and resistivities measurements in the warm dense matter regime. Phys. Plasmas 19, 082702.CrossRefGoogle Scholar
Constantin, C., Dewald, E., Niemann, C., Hoffmann, D.H.H., Udrea, S., Varentsov, D., Jacoby, V., Funk, U.N., Neuner, U. & Tauschwitz, A. (2004). Cold compression of solid matter by intense heavy-ion-beam-generated pressure waves. Laser Part. Beams 22, 5963.CrossRefGoogle Scholar
Desilva, A.W. & Kunze, H.J. (1994). Experimental study of the electrical conductivity of strongly coupled copper plasmas. Phys. Rev. E 49, 44484454.CrossRefGoogle ScholarPubMed
Devyatkov, V.N., Koval, N.N., Schanin, P.M., Grigoryev, V.P. & Koval, T.V. (2003). Generation and propagation of high-current low-energy electron beams. Laser Part. Beams 21, 243248.CrossRefGoogle Scholar
Dewald, E., Constantin, C., Udrea, S., Jacoby, J., Hoffmann, D.H.H., Niemann, C., Weiser, J., Tahir, N.A., Kozyreva, A., Shutov, A. & Tauschwitz, A. (2002). Studies of high energy density in matter driven by heavy ion beams in solid targets. Laser Part. Beams 20, 399403.CrossRefGoogle Scholar
Drake, R.P. (2009). Perspectives on high-energy-density physics. Phys. Plasmas 16, 055501.CrossRefGoogle Scholar
Glenzer, S.H., Landen, O.L., Neumayer, P., Lee, R.W., Widmann, K., Pollaine, S.W., Wallace, R.J., Gregori, G., Höll, A., Bornath, T., Thiele, R., Schwarz, V., Kraeft, W.-D. & Redmer, R. (2007). Observations of plasmons in warm dense matter. Phys. Rev. Lett. 98, 065002.CrossRefGoogle ScholarPubMed
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Jiang, W., Hashimoto, N., Shinkai, H., Ohtomo, K. & Yatsui, K. (1998). Characteristics of ablation plasma produced by pulsed light ion beam interaction with targets and applications to materials science. Nucl. Instrum. Methods Phys. Res. A 415, 533538.CrossRefGoogle Scholar
Jiang, W., Sakagami, T., Masugata, K. & Yatsui, K. (1993). Tight focusing of intense pulsed light-ion beam by spherical “plasma focus diode”. Jpn. J. Appl. Phys. 32, L752L754.CrossRefGoogle Scholar
Kashine, K., Yazawa, M., Harada, N., Jiang, W. & Yatsui, K. (2002). Foil acceleration of double-layer target by intense pulsed ion beam ablation. Jpn. J. Appl. Phys. 41, 40144018.CrossRefGoogle Scholar
Li, L., Chang, L., Zhang, L., Liu, J., Chen, G. & Wen, J. (2012). Development mechanism of cathode surface plasmas of high current pulsed electron beam sources for microwave irradiation generation. Laser Part. Beams 30, 541551.CrossRefGoogle Scholar
Miki, Y., Saito, H., Takahashi, T., Sasaki, T., Kikuchi, T. & Harada, N. (2014). Evaluation of transport properties of warm dense matter using isochoric pulsed-power discharges. Nucl. Instrum. Methods Phys. Res. A 733, 811.CrossRefGoogle Scholar
Ng, A., Ao, T., Perrot, F., Dharma-Wardana, M.W.C. & Foord, M.E. (2005). Idealized slab plasma approach for the study of warm dense matter. Laser Part. Beams 23, 527537.CrossRefGoogle Scholar
Niu, K. (1989). Propagation of relativistic electron beams. In Nuclear Fusion, p. 142. New York: Cambridge University Press.Google Scholar
Niu, K. (1997). Simulation of propagating a proton beam in a reactor. Laser Part. Beams 15, 151165.CrossRefGoogle Scholar
Redmer, R. & Röpke, G. (2010). Progress in the theory of dense strongly coupled plasmas. Contrib. Plasma Phys. 50, 970985.CrossRefGoogle Scholar
Saleem, S., Haun, J. & Kunze, H.-J. (2001). Electrical conductivity measurements of strongly coupled W plasmas. Phys. Rev. E 64, 056403.CrossRefGoogle ScholarPubMed
Sasaki, T., Miki, Y., Tachinami, F., Saito, H., Takahashi, T., Anzai, N., Kikuchi, T., Aso, T. & Harada, N. (2014). Warm dense matter study and pulsed-power developments for X-pinch equipment in Nagaoka University of Technology. Nucl. Instrum. Methods Phys. Res. A 733, 2831.CrossRefGoogle Scholar
Sasaki, T., Suzuki, T., Amano, Y., Miki, Y., Kikuchi, T., Harada, N. & Horioka, K. (2011). Evaluation of electrical conductivity in warm dense state using pulsed-power discharges. IOP Conf. Ser.: Mater. Sci. Eng. 21, 012016.CrossRefGoogle Scholar
Sasaki, T., Yano, Y., Nakajima, M., Kawamura, T. & Horioka, K. (2006). Warm-dense-matter studies using pulse-powered wire discharges in water. Laser Part. Beams 24, 371380.CrossRefGoogle Scholar
Tarasenko, V.F., Shunailov, S.A., Shpak, V.G. & Kostyrya, I.D. (2005). Supershort electron beam from air filled diode at atmospheric pressure. Laser Part. Beams 23, 545551.CrossRefGoogle Scholar
Yatsui, K., Grigoriu, C., Masugata, K., Jiang, W. & Sonegawa, T. (1997). Preparation of thin films and nanosize powders by intense, pulsed ion beam evaporation. Jpn. J. Appl. Phys. 36, 49284934.CrossRefGoogle Scholar
Yatsui, K., Tokuchi, A., Tanaka, H., Ishizuka, H., Kawai, A., Sai, E., Masugata, K., Ito, M. & Matsui, M. (1985). Geometric focusing of intense pulsed ion beams from racetrack type magnetically insulated diodes. Laser Part. Beams 3, 119155.CrossRefGoogle Scholar
Yoneda, H., Morikami, H., Ueda, K. & More, R.M. (2003). Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets. Phys. Rev. Lett. 91, 075004.CrossRefGoogle ScholarPubMed