Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T16:12:15.738Z Has data issue: false hasContentIssue false

Neutron Star Formation by Collapse of White Dwarfs

Published online by Cambridge University Press:  12 April 2016

R. Canal
Affiliation:
Departamento de Fisica de la Tierra y del Cosmos, Universidad de Barcelona, Spain
J. Isern
Affiliation:
Departamento de Fisica de la Tierra y del Cosmos, Universidad de Barcelona, Spain
J. Labay
Affiliation:
Departamento de Fisica de la Tierra y del Cosmos, Universidad de Barcelona, Spain

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mass-accreting carbon-oxygen white dwarfs become thermally and dynamically unstable when they reach high enough central densities. Carbon ignition at the star’s center likely propagates subsonically and, in the case of an initially solid core, leads to collapse if the rate of increase of the core’s mass is sufficiently fast. Recent results indicate, however, that solidification of the core induces carbon-oxygen separation. The central regions are then made of pure oxygen while carbon is rejected to lower-density layers. Carbon ignition happens only after neutronization of the central (oxygen) regions. Collapse to a neutron star is then independent from the rate of mass increase and the only possible restrictions are set by the behaviour of the outer, accreted layers. X-ray sources, pulsars and Type I supernovae are likely outcomes of this process.

Type
IX. Supernovae
Copyright
Copyright © Reidel 1980

References

Arnett, W.D. 1978, Astrophys. J., 219, 1008.CrossRefGoogle Scholar
Arnett, W.D. 1980, J. de Phys.Suppl., No3 Vol.41, C225.Google Scholar
Buchler, J.R., Colgate, S.A., and Mazurek, T.J. 1980. J. de Phys Suppl., No3, Vol.41, C2159.Google Scholar
Canal, R. 1980, J. de Phys. Suppl., No3, Vol.41, C2105.Google Scholar
Canal, P., and Isern, J. 1978, in “4th European regional Meeting in Astronomy”, Uppsala, Sweden, Uppsala Astron. Obs. Rept., No12, B18.Google Scholar
Canal, P., and Isern, J., 1979, in IAU Colloquium 53,“White Dwarfs and Variable Degenerate Stars, ed. Van Horn, H.M. and Weidemann, V. (University of Rochester), p.52.Google Scholar
Canal, R., and Schatzman, E. 1976, Astron. Astrophys., 46, 229 Google Scholar
Canal, R., Isern, J., and Labay, J. 1980a, “5th European Regional Meeting in Astronomy”, Liège, Belgium, Abstracts (Institut d’Astrophysique de l’Université de Liège),D.1.3.Google Scholar
Canal, R., Isern, J., and Labay, J. 1980b, Astrophys. J. Letters (in press).Google Scholar
Canal, R., Isern, J., and Labay, J. 1980c, in preparation.Google Scholar
Ergma, E.V., and Tutukov, A.V. 1976, Acta Astron., 26, 69.Google Scholar
Lamb, D.Q., and Van Horn, H.M. 1975, Astrophys. J., 200, 306.CrossRefGoogle Scholar
Lichtenstadt, I., Sack, N., and Bludman, S.A. 1980, preprint.Google Scholar
Mazurek, T.J., Meier, D.C., and Wheeler, J.C. 1977, Astrophys. J., 213, 518.CrossRefGoogle Scholar
Miyaji, S., Nomoto, K., Yokoi, K., and Sugimoto, D. 1979, Proceedings 16th International Cosmic Ray Conference, Kyoto Japan, 2, 13.Google Scholar
Nomoto, K., Sugimoto, D., and Neo, S. 1976, Astrophys. Space Sci., 39, L37.CrossRefGoogle Scholar
Stevenson, D.J. 1980, J. de Phys. Suppl., No3, Vol.41, C253.Google Scholar
Taylor, J.H. 1979, in “Highlights of Astronomy”.Google Scholar
Tinsley, B.M. 1977, in “Supernovae”, ed. Schramm, D.N. (Dordrecht: Reidel), p.117.Google Scholar
Webbink, R.F. 1979, in IAU Colloquium 53, “White Dwarfs and Variable Degenerate Stars”, ed. Van Horn, H.M. and $Wei.demann, V. (University of Rochester), p. 417.Google Scholar
Welan, J., and Iben, I. 1973, Astrophys. J., 186, 1007.CrossRefGoogle Scholar