Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T07:14:35.430Z Has data issue: false hasContentIssue false

Genes, genomes, and developmental process

Published online by Cambridge University Press:  11 September 2023

Jebediah Taylor
Affiliation:
University of Michigan Law School, Ann Arbor, MI, USA jebt@umich.edu
Staci Meredith Weiss
Affiliation:
Perinatal Imaging Partnership, Rosie Maternity Hospital, Cambridge, UK smw95@cam.ac.uk https://www.repro.cam.ac.uk/staff/dr-staci-meredith-weiss Department of Psychology, University of Cambridge, UK
Peter J. Marshall
Affiliation:
Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA peter.marshall@temple.edu https://sites.temple.edu/peterjmarshall/

Abstract

The view advanced by Madole & Harden falls back on the dogma of a gene as a DNA sequence that codes for a fixed product with an invariant function regardless of temporal and spatial contexts. This outdated perspective entrenches the metaphor of genes as static units of information and glosses over developmental complexities.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cao-Lei, L., Veru, F., Elgbeili, G., Szyf, M., Laplante, D. P., & King, S. (2016). DNA methylation mediates the effect of exposure to prenatal maternal stress on cytokine production in children at age 13½ years: Project Ice Storm. Clinical Epigenetics, 8, 54. https://doi.org/10.1186/s13148-016-0219-0CrossRefGoogle ScholarPubMed
Fjell, A. M., Chen, C., Sederevicius, D., Sneve, M. H., Grydeland, H., Krogsrud, S. K., … Walhovd, K. B. (2019). Continuity and discontinuity in human cortical development and change from embryonic stages to old age. Cerebral Cortex, 29, 38793890. https://doi.org/10.1093/cercor/bhy266CrossRefGoogle ScholarPubMed
Fujisawa, T. X., Nishitani, S., Takiguchi, S., Shimada, K., Smith, A. K., & Tomoda, A. (2019). Oxytocin receptor DNA methylation and alterations of brain volumes in maltreated children. Neuropsychopharmacology, 44, 20452053. https://doi.org/10.1038/s41386-019-0414-8CrossRefGoogle ScholarPubMed
Gawne, R., McKenna, K. Z., & Nijhout, H. F. (2018). Unmodern synthesis: Developmental hierarchies and the origin of phenotypes. BioEssays, 40, 1600265. https://doi.org/10.1002/bies.201600265CrossRefGoogle ScholarPubMed
Gottlieb, G. (1995). Some conceptual deficiencies in “developmental” behavior genetics. Human Development, 38, 131141. https://doi.org/10.1159/000278306CrossRefGoogle Scholar
Griffiths, P. E., & Stotz, K. (2006). Genes in the postgenomic era. Theoretical Medicine and Bioethics, 27, 499521. https://doi.org/10.1007/s11017-006-9020-yCrossRefGoogle ScholarPubMed
Griffiths, P. E., & Tabery, J. (2008). Behavioral genetics and development: Historical and conceptual causes of controversy. New Ideas in Psychology, 26, 332352. https://doi.org/10.1016/j.newideapsych.2007.07.016CrossRefGoogle Scholar
Jablonka, E., & Lamb, M. J. (2005). Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press.Google Scholar
Kaplan, J. M., & Turkheimer, E. (2021). Galton's Quincunx: Probabilistic causation in developmental behavior genetics. Studies in History and Philosophy of Science, 88, 6069. https://doi.org/10.1016/j.shpsa.2021.04.001CrossRefGoogle ScholarPubMed
Keller, E. F. (2014). From gene action to reactive genomes. The Journal of Physiology, 592, 24232429. https://doi.org/10.1113/jphysiol.2014.270991CrossRefGoogle ScholarPubMed
Li, G., Nie, J., Wang, L., Shi, F., Lin, W., Gilmore, J. H., & Shen, D. (2013). Mapping region-specific longitudinal cortical surface expansion from birth to 2 years of age. Cerebral Cortex, 23, 27242733. https://doi.org/10.1093/cercor/bhs265CrossRefGoogle ScholarPubMed
McManus, C. J., & Graveley, B. R. (2011). RNA structure and the mechanisms of alternative splicing. Current Opinion in Genetics & Development, 21, 373379. https://doi.org/10.1016/j.gde.2011.04.001CrossRefGoogle ScholarPubMed
Meaney, M. J. (2010). Epigenetics and the biological definition of gene × environment interactions. Child Development, 81, 4179. https://doi.org/10.1111/j.1467-8624.2009.01381.xCrossRefGoogle Scholar
Miguel, P. M., Pereira, L. O., Silveira, P. P., & Meaney, M. J. (2019). Early environmental influences on the development of children's brain structure and function. Developmental Medicine & Child Neurology, 61, 11271133. https://doi.org/10.1111/dmcn.14182CrossRefGoogle ScholarPubMed
Neumann-Held, E. M. (2001). Let's talk about genes: The process molecular gene concept and its context. In Oyama, S., Griffiths, P. E. & Gray, R. D. (Eds.), Cycles of contingency: Developmental systems and evolution (pp. 6984). MIT Press.Google Scholar
Newman, S. A. (2019). Inherency of form and function in animal development and evolution. Frontiers in Physiology, 10, 702. https://doi.org/10.3389/fphys.2019.00702CrossRefGoogle ScholarPubMed
Overton, W. F., & Lerner, R. M. (2014). Fundamental concepts and methods in developmental science: A relational perspective. Research in Human Development, 11, 6373. https://doi.org/10.1080/15427609.2014.881086CrossRefGoogle Scholar
Overton, W. F. (2010). Life-span development: Concepts and issues. In Lerner, R. M. (Series Ed.) & Overton, W. F. (Vol. Ed.), Handbook of life-span development: Vol. 1. Cognition, biology, and methods across the lifespan (pp. 129). Wiley. Retrieved from https://doi.org/10.1002/9780470880166.hlsd001001Google Scholar
Oyama, S. (1985). The ontogeny of information. Cambridge University Press.Google Scholar
Piatigorsky, J. (2007). Gene sharing and evolution: The diversity of protein functions. Harvard University Press.CrossRefGoogle Scholar
Portin, P., & Wilkins, A. (2017). The evolving definition of the term “gene”. Genetics, 205, 13531364. https://doi.org/10.1534/genetics.116.196956CrossRefGoogle ScholarPubMed
Robakis, T. K., Roth, M. C., King, L. S., Humphreys, K. L., Ho, M., Zhang, X., … Gotlib, I. H. (2022). Maternal attachment insecurity, maltreatment history, and depressive symptoms are associated with broad DNA methylation signatures in infants. Molecular Psychiatry, 27, 33063315. https://doi.org/10.1038/s41380-022-01592-wCrossRefGoogle ScholarPubMed
Senut, M. C., Cingolani, P., Sen, A., Kruger, A., Shaik, A., Hirsch, H., … Ruden, D. (2012). Epigenetics of early-life lead exposure and effects on brain development. Epigenomics, 4, 665674. https://doi.org/10.2217/epi.12.58CrossRefGoogle ScholarPubMed
The ENCODE Project Consortium (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447, 799816. https://doi.org/10.1038/nature05874CrossRefGoogle Scholar
The ENCODE Project Consortium (2012). An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 5774. https://doi.org/10.1038/nature11247CrossRefGoogle Scholar
West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford University Press.CrossRefGoogle Scholar
Witherington, D. C. (2011). Taking emergence seriously: The centrality of circular causality for dynamic systems approaches to development. Human Development, 54, 6692. https://doi.org/10.1159/000326814CrossRefGoogle Scholar