Hostname: page-component-6b989bf9dc-cvxtj Total loading time: 0 Render date: 2024-04-14T23:54:34.830Z Has data issue: false hasContentIssue false

The case for a notation-independent representation of number

Published online by Cambridge University Press:  27 August 2009

Stanislas Dehaene
Affiliation:
Inserm-CEA Cognitive Neuroimaging Unit, NeuroSpin Center, CEA/SAC/DSV/I2BM, Bât 145, Point Courrier 156, F-91191 Gif/Yvette, France. Stanislas.Dehaene@cea.frhttp://www.unicog.org

Abstract

Cohen Kadosh & Walsh (CK&W) neglect the solid empirical evidence for a convergence of notation-specific representations onto a shared representation of numerical magnitude. Subliminal priming reveals cross-notation and cross-modality effects, contrary to CK&W's prediction that automatic activation is modality and notation-specific. Notation effects may, however, emerge in the precision, speed, automaticity, and means by which the central magnitude representation is accessed.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Campbell, J. I. D. & Clark, J. M. (1988) An encoding complex view of cognitive number processing: Comment on McCloskey, Sokol, & Goodman (1986). Journal of Experimental Psychology: General 117:204–14.Google Scholar
Dehaene, S. (1996) The organization of brain activations in number comparison: Event-related potentials and the additive-factors method. Journal of Cognitive Neuroscience 8:4768.CrossRefGoogle ScholarPubMed
Dehaene, S. (2007) Symbols and quantities in parietal cortex: Elements of a mathematical theory of number representation and manipulation. In: Attention & performance XXII. Sensori-motor foundations of higher cognition, ed. Haggard, P. & Rossetti, Y., pp. 527–74. Harvard University Press.Google Scholar
Dehaene, S. & Changeux, J. P. (1993) Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neuroscience 5:390407.CrossRefGoogle ScholarPubMed
Dehaene, S. & Cohen, L. (2007) Cultural recycling of cortical maps. Neuron 56(2):384–98.CrossRefGoogle ScholarPubMed
Dehaene, S., Izard, V., Spelke, E. & Pica, P. (2008) Log or linear? Distinct intuitions of the number scale in Western and Amazonian indigene cultures. Science 320(5880):1217–20.CrossRefGoogle ScholarPubMed
Dehaene, S., Naccache, L., Le Clec'H, G., Koechlin, E., Mueller, M., Dehaene-Lambertz, G., Van de Moortele, P. F. & Le Bihan, D. (1998b) Imaging unconscious semantic priming. Nature 395:597600.CrossRefGoogle ScholarPubMed
Diester, I. & Nieder, A. (2007) Semantic associations between signs and numerical categories in the prefrontal cortex. PLoS Biology 5(11):e294; 2684–95.CrossRefGoogle ScholarPubMed
Eger, E., Michel, V., Thirion, B., Amadon, A., Dehaene, S. & Kleinschmidt, A. (submitted) Decoding of individual number information from spatial activation patterns in human intraparietal cortex.Google Scholar
Gilmore, C. K., McCarthy, S. E. & Spelke, E. S. (2007) Symbolic arithmetic knowledge without instruction. Nature 447(7144):589–91.CrossRefGoogle ScholarPubMed
Girelli, L., Lucangeli, D. & Butterworth, B. (2000) The development of automaticity in accessing number magnitude. Journal of Experimental Child Psychology 76(2): 104–22.CrossRefGoogle ScholarPubMed
Jacob, S. N. & Nieder, A. (2009) Notation-independent representation of fractions in the human parietal cortex. Journal of Neuroscience 29(14):4652–57.CrossRefGoogle ScholarPubMed
Knops, A., Thirion, B., Hubbard, E. M., Michel, V. & Dehaene, S. (2009) Recruitment of an area involved in eye movements during mental arithmetic. Science 324:1583–85.Google ScholarPubMed
Kouider, S. & Dehaene, S. (in press) Subliminal number priming within and across the visual and auditory modalities. Experimental Psychology.Google Scholar
Naccache, L. & Dehaene, S. (2001a) The priming method: Imaging unconscious repetition priming reveals an abstract representation of number in the parietal lobes. Cerebral Cortex 11(10):966–74.CrossRefGoogle ScholarPubMed
Nieder, A., Diester, I. & Tudusciuc, O. (2006) Temporal and spatial enumeration processes in the primate parietal cortex. Science 313(5792):1431–35.CrossRefGoogle ScholarPubMed
Piazza, M., Pinel, P., Le Bihan, D. & Dehaene, S. (2007) A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron 53(2):293305.CrossRefGoogle ScholarPubMed
Pinel, P., Piazza, M., Le Bihan, D. & Dehaene, S. (2004) Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron 41(6):983–93.CrossRefGoogle ScholarPubMed
Pouget, A., Deneve, S. & Duhamel, J. R. (2002) A computational perspective on the neural basis of multisensory spatial representations. Nature Reviews Neuroscience 3(9):741–47.CrossRefGoogle ScholarPubMed
Reynvoet, B. & Brysbaert, M. (2004) Cross-notation number priming investigated at different stimulus onset asynchronies in parity and naming tasks. Experimental Psychology 51(2):8190.CrossRefGoogle ScholarPubMed
Reynvoet, B., Brysbaert, M. & Fias, W. (2002) Semantic priming in number naming. Quarterly Journal of Experimental Psychology A 55(4):1127–39.CrossRefGoogle ScholarPubMed
Roggeman, C., Verguts, T. & Fias, W. (2007) Priming reveals differential coding of symbolic and non-symbolic quantities. Cognition 105(2):380–94.Google ScholarPubMed
Roitman, J. D., Brannon, E. M. & Platt, M. L. (2007) Monotonic coding of numerosity in macaque lateral intraparietal area. PLoS Biology 5(8):e208.Google ScholarPubMed
Siegler, R. S. & Opfer, J. E. (2003) The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science 14(3):237–43.CrossRefGoogle ScholarPubMed
Tudusciuc, O. & Nieder, A. (2007) Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex. Proceedings of the National Academy of Sciences USA 104(36):14513–18.CrossRefGoogle ScholarPubMed
Verguts, T. & Fias, W. (2004) Representation of number in animals and humans: A neural model. Journal of Cognitive Neuroscience 16(9):1493–504.CrossRefGoogle ScholarPubMed