Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T08:59:31.271Z Has data issue: false hasContentIssue false

The promotion and prevention of recoiling in a maximally snaillike vermetid gastropod: a case study for the centenary of Dollo's Law

Published online by Cambridge University Press:  08 February 2016

Stephen Jay Gould
Affiliation:
Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138
Betsey A. Robinson
Affiliation:
Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138

Abstract

The Neogene species Petaloconchus sculpturatus presents a contradiction in terms, for it grows whorl “packages” of nearly perfect regularity, but ranks within the most geometrically irregular family of uncoiled gastropods, the Vermetidae. We perform a first biometric study of vermetids (only possible because sufficient regularity of growth permits us to number and identify whorls) to specify and characterize the factors on both sides of this “exquisite tension” between promotion and prevention of recoiling. Promoting factors include the older phyletic heritage of preserved dextral coiling, and the more immediate vermetid (or specifically petaloconchid) features of growth toward open spaces (where regular coiling might proceed in an unimpeded fashion); radular excision of discordant feeding tubes with shaping of the resulting scar so that growth may proceed in conformity with previous whorls; and locking of subsequent whorls upon a keel formed by longitudinal bead-rows of the previous whorl. Preventing factors include prominent phyletic heritage of all vermetids—maximal early irregularity enjoined by discordance between larval and subsequent growth (with teleoconch wrapping itself around the protoconch), thus precluding an ordered substrate to act as a foundation for regular whorl “packages” of intermediary growth—and a set of features specific to this lineage and acting as geometric constraints. In this category, we particularly document the exceedingly low rate of whorl expansion and the consequently wide umbilical space that produces a shell akin to winding a cylindrical coil of narrow-diameter rope around the periphery of a wide circular platform. This complex combination of promoting and preventing factors produces a shell that is tantalizingly close to fully regular, but cannot truly reattain this previous phyletic state—thus providing a fine example of Dollo's Law at the centenary of his formation of irreversibility.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Andrews, H. E. 1971. Turritella mortoni (Gastropoda) and biostratigraphy of the Aquia Formation of Maryland and Virginia. Ph.D. dissertation. Harvard University, Cambridge, Mass.Google Scholar
Brandon, R. N. 1990. Adaptation and environment. Princeton University Press, N.J.Google Scholar
Brosius, J., and Gould, S. J. 1992. On “genomenclature”: a comprehensive (and respectful) taxonomy for pseudogenes and other “junk DNA.” Proceedings of the National Academy of Sciences, U.S.A. 89:1070610710.CrossRefGoogle ScholarPubMed
Buckland, W. 1836. Geology and mineralogy considered with reference to natural theology. Pickering, London.CrossRefGoogle Scholar
Buss, L. W. 1987. The evolution of individuality. Princeton University Press, N.J.Google Scholar
Carpenter, P. P. 1856. First steps towards a monograph of the Recent species of Petaloconchus, a genus of the Vermetidae. Proceedings of the Zoological Society of London, part 24 for 1856:313317.Google Scholar
Darwin, C. 1859. On the origin of species. John Murray, London.Google Scholar
Desmond, A. 1982. Archetypes and ancestors. University of Chicago Press.Google Scholar
Dollo, L. 1893. Les lois de l'évolution. Bulletin de la société belge de géologie, paléontologie et hydrologie 7:164166.Google Scholar
Dollo, L. 1905. Les dinosauriens adaptés à la vie quadrupéde secondaire. Bulletin de la société belge de géologie, paléontologie et hydrologie 19:441448.Google Scholar
Dollo, L. 1912. Les céphalopodes adaptés à la vie nectique secondaire et à la vie benthique tertiare. Zoologisches Jahrbuch 15:105140.Google Scholar
Dollo, L. 1922. Les céphalopodes déroulés et l'irreversibilité de l'évolution. Bijdragen tot de Dierkunde pp. 215227.CrossRefGoogle Scholar
Elder, D., and Sibatani, A. 1991. Holistic molluscs and entrainment. Revista di biologia 84:113120.Google Scholar
Gould, S. J. 1966. Notes on shell morphology and classification of the Siliquariidae (Gastropoda): the protoconch and slit of Siliquaria squamata Blainville. American Museum Novitates 2263:113.Google Scholar
Gould, S. J. 1968. Phenotypic reversion to ancestral form and habit in a marine snail. Nature (London) 220:804.CrossRefGoogle Scholar
Gould, S. J. 1969. Ecology and functional significance of uncoiling in Vermicularia spirata: an essay on gastropod form. Bulletin of Marine Sciences 19:432445.Google Scholar
Gould, S. J. 1970. Dollo on Dollo's law: irreversibility and the status of evolutionary laws. Journal of the History of Biology 3:189212.CrossRefGoogle ScholarPubMed
Gould, S. J. 1984. Morphological channeling by structural constraint: convergence in styles of dwarfing and gigantism in Cerion, with a description of two new fossil species and a report on the discovery of the largest Cerion. Paleobiology 10:172194.CrossRefGoogle Scholar
Gould, S. J. 1986. Archetype and adaptation. National History 95:1627.Google Scholar
Gould, S. J. 1989. A developmental constraint in Cerion, with comments on the definition and interpretation of constraint in evolution. Evolution 43:516539.Google ScholarPubMed
Gould, S. J. 1992. Constraint and the square snail: life at the limits of a covariance set. The normal teratology of Cerion disforme. Biological Journal of the Linnean Society 47:407437.CrossRefGoogle Scholar
Gould, S. J. 1993. Eight little piggies: reflections in natural history. Norton, New York.Google Scholar
Gould, S. J.In press. Petaloconchus sculpturatus alaminatus, a new subspecies of vermetid gastropods lacking its defining generic character, with comments on vermetid systematics in general. Journal of Paleontology.Google Scholar
Gregory, W. K. 1913. Locomotive adaptations in fishes illustrating “habitus” and “heritage.” Annals of the New York Academy of Sciences pp. 267268.Google Scholar
Hadfield, M. G., and Hopper, C. N. 1980. Ecological and evolutionary significance of pelagic spermatophores of vermetid gastropods. Marine Biology 57:315325.CrossRefGoogle Scholar
Hadfield, M. G., and Iaea, D. K. 1989. Velum of encapsulated veligers of Petaloconchus (Gastropoda), and the problem of reevolution of planktotrophic larvae. Bulletin of Marine Science 45:377386.Google Scholar
Hadfield, M. G., Kay, E. A., Gillette, M. V., and Lloyd, M. C. 1972. The Vermetidae (Mollusca: Gastropoda) of the Hawaiian Islands. Marine Biology 12:8198.CrossRefGoogle Scholar
Hopper, C. N. 1981. The ecology and reproductive biology of some Hawaiian vermetid gastropods. Ph.D. dissertation. University of Hawaii.Google Scholar
Hughes, R. N. 1979. Coloniality in Vermetidae (Gastropoda). Pp. 243253in Larwood, G. and Rosen, B. R., eds. Biology and systematics of colonial organisms. Academic Press, New York.Google Scholar
Hutchinson, J. M. C. 1989. Control of gastropod shell shape; the role of the preceding whorl. Journal of Theoretical Biology 140:431444.CrossRefGoogle Scholar
Jones, D. S., MacFadden, B. J., Webb, S. D., Mueller, P. A., Hodell, D. A., and Cronin, T. M. 1991. Integrated geochronology of a classic Pliocene fossil site in Florida: linking marine and terrestrial biochronologies. Journal of Geology 99:637648.CrossRefGoogle Scholar
Kauffman, S. A. 1993. The origins of order. Oxford University Press, New York.CrossRefGoogle Scholar
Keen, A. M. 1961. A proposed reclassification of the gastropod family Vermetidae. Bulletin of the British Museum (Natural History) Zoology 7:183213.Google Scholar
Lea, H. C. 1843. Description of some new fossil shells, from the Tertiary of Petersburg, Virginia. Transactions of the American Philosophical Society 9:229274.CrossRefGoogle Scholar
Lieberman, B. S., Allmon, W. D., and Eldredge, N. 1993. Levels of selection and macroevolutionary patterns in the turritellid gastropods. Paleobiology 19:205215.CrossRefGoogle Scholar
Lloyd, E. A. 1988. The structure and confirmation of evolutionary theory. Greenwood, New York.Google Scholar
McGowan, C. 1989. Leptopterygius tenuirostris and other long-snouted ichthyosaurs from the English Lower Lias. Palaeontology 32:409427.Google Scholar
Morita, R. 1991. Mechanical constraints on aperture form in gastropods. Journal of Morphology 207:93102.CrossRefGoogle ScholarPubMed
Morton, J. E. 1953. Vermicularia and the turritellids. Proceedings of the Malacological Society of London 30:8086.Google Scholar
Morton, J. E. 1955. The evolution of vermetid gastropods. Pacific Science 9:315.Google Scholar
Morton, J. E. 1965. Form and function in the evolution of the Vermetidae. Bulletin of the British Museum (Natural History) Zoology 11:583630.CrossRefGoogle Scholar
Moseley, H. 1838. On the geometrical forms of turbinated and discoid shells. Philosophical Transactions of the Royal Society of London 128:351370.Google Scholar
Okamoto, T. 1988. Analysis of heteromorph ammonoids by differential geometry. Palaeontology 31:3552.Google Scholar
Olsson, A. A. 1951. New Floridan species of Ostrea and Vermicularia. Nautilus 65:68.Google Scholar
Owen, R. 1861. Monograph on the fossil Reptilia of the Liassic Formation. Palaeontographical Society, London.CrossRefGoogle Scholar
Rex, M. A., and Boss, K. J. 1976. Open coiling in Recent Gastropoda. Malacologia 15:289297.Google Scholar
Seilacher, A. 1970. Arbeitskonzept zur Konstruktions-Morphologie. Lethaia 3:393396.CrossRefGoogle Scholar
Stanley, S. M. 1986. Anatomy of a regional mass extinction: Plio-Pleistocene decimation of the Western Atlantic bivalve fauna. Palaios 1:1736.CrossRefGoogle Scholar
Thompson, D. W. 1917. On growth and form. Macmillan, London.CrossRefGoogle Scholar
Williams, G. C. 1992. Natural selection: domains, levels, and challenges. Oxford University Press, New York.CrossRefGoogle Scholar