Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-05T20:22:13.763Z Has data issue: false hasContentIssue false

Observational constraints on massive star evolution

Published online by Cambridge University Press:  26 May 2016

Philip Massey*
Affiliation:
Lowell Observatory, 1400 West Mars Hill Rd., Flagstaff, AZ 86001, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, I discuss the observational quantities that are useful for judging the successes and failures of current massive star evolutionary theory. The galaxies of the Local Group can serve as important laboratories for providing these diagnostics, as their metallicities vary by a factor of ten. We find that the evolutionary tracks do a good job of matching the distribution of stars in the H-R diagram during the main-sequence phase. However, none of the models produce RSGs that are as cool and as bright as what is observed. The relative number of WC and WN stars is a strong function of metallicity, and the Padova and Geneva ‘normal mass-loss’ models do a reasonably good job of matching the observations at low metallicities, but predict too few WCs at higher metallicity. The ‘enhanced’ mass-loss models of the Geneva group do not match the observations at all. New data is providing excellent statistics on the number of RSGs in these nearby galaxies, and the number ratio of RSGs to WRs is also an extremely sensitive function of metallicity. None of the models reproduce the trend of the RSG/WR ratio with metallicity.

Type
Part 2. Interiors of Massive Stars
Copyright
Copyright © Astronomical Society of the Pacific 2003 

References

Bohannan, B., Walborn, N.R. 1989, PASP 101, 520.Google Scholar
Breysacher, J., Azzopardi, M., Testor, G. 1999, A&AS 137, 117.Google Scholar
Burkholder, V., Massey, P., Morrell, N. 1997, ApJ 490, 328.CrossRefGoogle Scholar
Conti, P.S. 1988, in: Conti, P.S. & Underhill, A.B. (eds.), O Stars and Wolf-Rayet Stars, NASA SP-497, p. 81.Google Scholar
Crowther, P.A., Smith, L.J., Willis, A.J. 1995, A&A 304, 269.Google Scholar
Elias, J.H., Frogel, J.A., Humphreys, R.M. 1985, ApJS 57, 91.Google Scholar
Fitzpatrick, E.L., Garmany, C.D. 1990, ApJ 363, 119.Google Scholar
Herrero, A., Kudritzki, R.P., Vílchez, J.M., et al. 1992, A&A 261, 209.Google Scholar
Humphreys, R.M. 1978, ApJS 38, 309.Google Scholar
Langer, N. 1991, A&A 252, 66.Google Scholar
Maeder, A., Lequeux, J., Azzopardi, M. 1980, A&A 90, 17.Google Scholar
Maeder, A., Meynet, G. 1987, A&A 182, 243.Google Scholar
Massey, P., Armandroff, T.E. 1995, AJ 109, 2470.Google Scholar
Massey, P., Bianchi, L., Hutchings, J.B., Stecher, T.P. 1996, ApJ 469, 629.CrossRefGoogle Scholar
Massey, P., Lang, C.C., DeGioia-Eastwood, K., Garmany, C.D. 1995, ApJ 438, 188.Google Scholar
Massey, P. 1998, ApJ 501, 153.Google Scholar
Massey, P., Johnson, O. 1998, ApJ 505, 793.Google Scholar
Massey, P., Hunter, D.A. 1998, ApJ 493, 180.CrossRefGoogle Scholar
Massey, P., Waterhouse, E., DeGioia-Eastwood, K. 2000, AJ 119, 2214.Google Scholar
Massey, P., DeGioia-Eastwood, K., Waterhouse, E. 2001, AJ 121, 1050.Google Scholar
Massey, P., Duffy, A.S. 2001, ApJ 550, 713.Google Scholar
Massey, P. 2002, ApJS 141, 81.CrossRefGoogle Scholar
Massey, P., Penny, L.R., Vukovich, J. 2002, ApJ 565, 982.Google Scholar
Massey, P., Holmes, S. 2002, ApJ (Letters) 580, L35.CrossRefGoogle Scholar
Meylan, G., Maeder, A. 1982, A&A 108, 148.Google Scholar
Meynet, G., Maeder, A., Schaller, G., et al. 1994, A&AS 103, 97.Google Scholar
Royer, P., Smartt, S.J., Manfroid, J., Vreux, J.-M. 2001, A&A (Letters) 366, L1.Google Scholar
Salasnich, B., Bressan, A., Chiosi, C. 1999, A&A 342, 131.Google Scholar
Schaerer, D., Meynet, G., Maeder, A., Schaller, G. 1993, A&AS 98, 523.Google Scholar
Schaerer, D., Vacca, W.D. 1998, ApJ 497, 618.Google Scholar
Schaller, G., Schaerer, D., Meynet, G., Maeder, A. 1992, A&AS 96, 269.Google Scholar