Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T08:35:05.027Z Has data issue: false hasContentIssue false

Galaxy Formation and Baryonic Dark Matter

Published online by Cambridge University Press:  26 May 2016

Françoise Combes*
Affiliation:
Observatoire de Paris, 61 Av. de l'Observatoire, F-75 014, Paris, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The ACDM scenario to form galaxies encounters many problems when confronted with observations, namely the prediction of dark matter cusps in all galaxies, and in particular in dwarf irregulars, dominated by dark matter, or the low angular momentum and consequent small size of galaxy disks, or the high predicted number of small systems. We will consider the hypothesis that the baryonic dark matter could be in the form of gas and could be continuously involved in the galaxy formation scenario. By accreting cold gas throughout a galaxy's life, angular momentum could be increased, galaxy disks could be more dominated by baryons than previously thought, and small systems could merge more frequently.

Type
Part 7: Baryonic Dark Matter
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Abadi, M. G., Navarro, J. F., Steinmetz, M., Eke, V.R. 2003, ApJ, 591, 499.Google Scholar
Afonso, C., Albert, J.N., Andersen, J. et al. 2003, A&A, 400, 951.Google Scholar
Alcock, C., Allsman, R.A., Alves, D.R. et al. 2001, ApJ, 550, L169.Google Scholar
Binney, J. 2003, MNRAS, in press (astro-ph/0308172).Google Scholar
Binney, J., Gerhard, O., Silk, J. 2001, MNRAS, 321, 471.Google Scholar
Block, D., Bournaud, F., Combes, F. Puerari, I., Buta, R. 2002, A&A, 394, L35.Google Scholar
Bournaud, F., Combes, F. 2002, A&A, 392, 83.Google Scholar
Bullock, J. S., Kravtsov, A. V., Weinberg, D. H. 2001, ApJ, 548, 33.Google Scholar
Chiu, W. A., Gnedin, N. Y., Ostriker, J. P. 2001, ApJ, 563, 21.Google Scholar
Colin, P., Avila-Reese, V., Valenzuela, O. 2000, ApJ, 542, 622.Google Scholar
Combes, F. 2002, NewAR, 46, 755.Google Scholar
David, L. P., Jones, C., Forman, W. 1995, ApJ, 445, 578.CrossRefGoogle Scholar
de Blok, W. J. G., Bosma, A., McGaugh, S. 2003, MNRAS, 340, 657.Google Scholar
Eke, V., Efstathiou, G., Wright, L. 2000, MNRAS, 315, L18.Google Scholar
El-Zant, A., Hoffman, Y., Primack, J., Combes, F., Shlosman, I. 2003, ApJL, submitted (astro-ph/0309412).Google Scholar
Eskridge, P. B., Frogel, J. A., Pogge, R. W. et al. 2002, ApJS, 143, 73.Google Scholar
Ettori, S., Fabian, A. C. 1999, MNRAS, 305, 834.Google Scholar
Fukushige, T., Makino, J. 2003, ApJ, 588, 674.CrossRefGoogle Scholar
Gardner, J. P., Katz, N., Hernquist, L., Weinberg, D. H. 2003, ApJ, 587, 1.Google Scholar
Gnedin, O.Y., Zhao, H. 2002, MNRAS, 333, 299.CrossRefGoogle Scholar
Hasan, H., Norman, C. 1990, ApJ, 361, 69.CrossRefGoogle Scholar
Hoekstra, H., van Albada, T. S., Sancisi, R. 2001, MNRAS, 323, 453.CrossRefGoogle Scholar
Hogan, C. J., Dalcanton, J. J. 2000, Phys Rev D, 62, 3511.Google Scholar
Katz, N., Keres, D., Dave, R., Weinberg, D.H. 2003, in The IGM/Galaxy Connection: The Distribution of Baryons at z=0, eds. Rosenberg, J. L. & Putman, M. E. (Dordrecht: Kluwer), p.185.CrossRefGoogle Scholar
Knebe, A., Devriendt, J. E. G., Mahmood, A., Silk, J. 2002, MNRAS, 329, 813.Google Scholar
Lassere, T., Afonso, C., Albert, J. N. et al. 2000, A&A, 355, L39.Google Scholar
Maller, A. H., Dekel, A. 2002, MNRAS, 335, 487.CrossRefGoogle Scholar
Mayer, L., Governato, F., Colpi, M. et al. 2001, ApJ, 547, L123.CrossRefGoogle Scholar
McGaugh, S. S., Barker, M. K., de Blok, W. J. G. 2003, ApJ, 584, 566.Google Scholar
McGaugh, S. S., Schombert, J. M., Bothun, G. D., de Blok, W. J. G. 2000, ApJ, 533, L99.Google Scholar
Meza, A., Navarro, J. F., Steinmetz, M., Eke, V. R. 2003, ApJ, 590, 619.CrossRefGoogle Scholar
Milosavljevic, M., Merritt, D. 2001, ApJ, 563, 34.Google Scholar
Mo, H. J., Mao, S., White, S. D. M. 1998, MNRAS, 295, 319.Google Scholar
Moore, B., Ghigna, S., Governato, F., et al. 1999, ApJ, 524, L19.Google Scholar
Navarro, J. F., Frenk, C. S., White, S. D. M. 1997, ApJ, 490, 493.Google Scholar
Navarro, J. F., Steinmetz, M. 2000, ApJ, 538, 477.CrossRefGoogle Scholar
Pfenniger, D., Combes, F. 1994, A&A, 285, 94.Google Scholar
Pfenniger, D., Combes, F., Martinet, L. 1994, A&A, 285, 79.Google Scholar
Renzini, A. 1997, ApJ, 488, 35.Google Scholar
Renzini, A. 2003, astro-ph/0307146.Google Scholar
Sadat, R., Blanchard, A. 2001, A&A, 371, 19.Google Scholar
Sand, D. J., Treu, T., Ellis, R. S. 2002, ApJ, 574, L129.Google Scholar
Spergel, D. N., Steinhardt, P. J. 2000, Phys Rev Lett, 84, 3760.Google Scholar
Swaters, R. A., Madore, B. F., van den Bosch, F. C., Balcells, M. 2003, ApJ, 583, 732.Google Scholar
Thacker, R. J., Couchman, H. M. P. 2001, ApJ, 555, L17.Google Scholar
Valageas, P., Schaeffer, R., Silk, J. 2002, A&A, 388, 741.Google Scholar
Weil, M. L., Eke, V. R., Efstathiou, G. 1998, MNRAS, 300, 773.Google Scholar
Weinberg, M. D., Katz, N. 2002, ApJ, 580, 627.CrossRefGoogle Scholar