Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T20:36:19.640Z Has data issue: false hasContentIssue false

Dynamic aberrances of substantia nigra-relevant coactivation patterns in first-episode treatment-naïve patients with schizophrenia

Published online by Cambridge University Press:  25 March 2024

Lihong Deng
Affiliation:
Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Wei Wei
Affiliation:
Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
Chunxia Qiao
Affiliation:
Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Yubing Yin
Affiliation:
Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Xiaojing Li
Affiliation:
Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
Hua Yu
Affiliation:
Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
Lingqi Jian
Affiliation:
Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Xiaohong Ma
Affiliation:
Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Liansheng Zhao
Affiliation:
Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Qiang Wang
Affiliation:
Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Wei Deng
Affiliation:
Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
Wanjun Guo
Affiliation:
Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
Tao Li*
Affiliation:
Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China Nanhu Brain-computer Interface Institute, Hangzhou, Zhejiang, China Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, Zhejiang, China NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, Zhejiang, China
*
Corresponding author: Tao Li; Email: litaozjusc@zju.edu.cn

Abstract

Background

Although dopaminergic disturbances are well-known in schizophrenia, the understanding of dopamine-related brain dynamics remains limited. This study investigates the dynamic coactivation patterns (CAPs) associated with the substantia nigra (SN), a key dopaminergic nucleus, in first-episode treatment-naïve patients with schizophrenia (FES).

Methods

Resting-state fMRI data were collected from 84 FES and 94 healthy controls (HCs). Frame-wise clustering was implemented to generate CAPs related to SN activation or deactivation. Connectome features of each CAP were derived using an edge-centric method. The occurrence for each CAP and the balance ratio for antagonistic CAPs were calculated and compared between two groups, and correlations between temporal dynamic metrics and symptom burdens were explored.

Results

Functional reconfigurations in CAPs exhibited significant differences between the activation and deactivation states of SN. During SN activation, FES more frequently recruited a CAP characterized by activated default network, language network, control network, and the caudate, compared to HCs (F = 8.54, FDR-p = 0.030). Moreover, FES displayed a tilted balance towards a CAP featuring SN-coactivation with the control network, caudate, and thalamus, as opposed to its antagonistic CAP (F = 7.48, FDR-p = 0.030). During SN deactivation, FES exhibited increased recruitment of a CAP with activated visual and dorsal attention networks but decreased recruitment of its opposing CAP (F = 6.58, FDR-p = 0.034).

Conclusion

Our results suggest that neuroregulatory dysfunction in dopaminergic pathways involving SN potentially mediates aberrant time-varying functional reorganizations in schizophrenia. This finding enriches the dopamine hypothesis of schizophrenia from the perspective of brain dynamics.

Type
Original Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

References

Abi-Dargham, A., Rodenhiser, J., Printz, D., Zea-Ponce, Y., Gil, R., Kegeles, L. S., … Laruelle, M. (2000). Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proceedings of the National Academy of Sciences, 97(14), 81048109. doi: 10.1073/pnas.97.14.8104CrossRefGoogle ScholarPubMed
Baker, J. T., Dillon, D. G., Patrick, L. M., Roffman, J. L., Brady, R. O., Pizzagalli, D. A., … Holmes, A. J. (2019). Functional connectomics of affective and psychotic pathology. Proceedings of the National Academy of Sciences, 116(18), 90509059. doi: 10.1073/pnas.1820780116CrossRefGoogle ScholarPubMed
Baker, J. T., Holmes, A. J., Masters, G. A., Yeo, B. T. T., Krienen, F., Buckner, R. L., & Öngür, D. (2014). Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiatry, 71(2), 109118. doi: 10.1001/jamapsychiatry.2013.3469CrossRefGoogle ScholarPubMed
Bär, K.-J., de la Cruz, F., Schumann, A., Koehler, S., Sauer, H., Critchley, H., & Wagner, G. (2016). Functional connectivity and network analysis of midbrain and brainstem nuclei. Neuroimage, 134, 5363. doi: 10.1016/j.neuroimage.2016.03.071CrossRefGoogle ScholarPubMed
Bolton, T. A. W., Morgenroth, E., Preti, M. G., & Van De Ville, D. (2020a). Tapping into multi-faceted human behavior and psychopathology using fMRI brain dynamics. Trends in Neurosciences, 43(9), 667680. doi: 10.1016/j.tins.2020.06.005CrossRefGoogle ScholarPubMed
Bolton, T. A. W., Tuleasca, C., Wotruba, D., Rey, G., Dhanis, H., Gauthier, B., … Van De Ville, D. (2020b). TbCAPs: A toolbox for co-activation pattern analysis. Neuroimage, 211, 116621. doi: 10.1016/j.neuroimage.2020.116621CrossRefGoogle ScholarPubMed
Bolton, T. A. W., Wotruba, D., Buechler, R., Theodoridou, A., Michels, L., Kollias, S., … Van De Ville, D. (2020c). Triple network model dynamically revisited: Lower salience network state switching in pre-psychosis. Frontiers in Physiology, 11, 66. doi: 10.3389/fphys.2020.00066CrossRefGoogle ScholarPubMed
Chang, C., & Glover, G. H. (2010). Time–frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage, 50(1), 8198. doi: 10.1016/j.neuroimage.2009.12.011CrossRefGoogle ScholarPubMed
Charlson, F. J., Ferrari, A. J., Santomauro, D. F., Diminic, S., Stockings, E., Scott, J. G., … Whiteford, H. A. (2018). Global epidemiology and burden of schizophrenia: Findings from the global burden of disease study 2016. Schizophrenia Bulletin, 44(6), 11951203. doi: 10.1093/schbul/sby058CrossRefGoogle ScholarPubMed
Chen, J. E., Chang, C., Greicius, M. D., & Glover, G. H. (2015). Introducing co-activation pattern metrics to quantify spontaneous brain network dynamics. Neuroimage, 111, 476488. doi: 10.1016/j.neuroimage.2015.01.057CrossRefGoogle ScholarPubMed
Chinta, S. J., & Andersen, J. K. (2005). Dopaminergic neurons. The International Journal of Biochemistry & Cell Biology, 37(5), 942946. doi: 10.1016/j.biocel.2004.09.009CrossRefGoogle ScholarPubMed
Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind-wandering as spontaneous thought: A dynamic framework. Nature Reviews Neuroscience, 17(11), 718731. doi: 10.1038/nrn.2016.113CrossRefGoogle ScholarPubMed
Chumin, E. J., Faskowitz, J., Esfahlani, F. Z., Jo, Y., Merritt, H., Tanner, J., … Sporns, O. (2022). Cortico-subcortical interactions in overlapping communities of edge functional connectivity. Neuroimage, 250, 118971. doi: 10.1016/j.neuroimage.2022.118971CrossRefGoogle ScholarPubMed
Cloutier, M., Sanon Aigbogun, M., Guerin, A., Nitulescu, R., Ramanakumar, A. V., Kamat, S. A., … Wu, E. (2016). The economic burden of schizophrenia in the United States in 2013. The Journal of Clinical Psychiatry, 77(06), 764771. doi: 10.4088/JCP.15m10278CrossRefGoogle ScholarPubMed
Cole, D. M., Beckmann, C. F., Oei, N. Y. L., Both, S., van Gerven, J. M. A., & Rombouts, S. A. R. B. (2013a). Differential and distributed effects of dopamine neuromodulations on resting-state network connectivity. Neuroimage, 78, 5967. doi: 10.1016/j.neuroimage.2013.04.034CrossRefGoogle ScholarPubMed
Cole, D. M., Oei, N. Y. L., Soeter, R. P., Both, S., van Gerven, J. M. A., Rombouts, S. A. R. B., & Beckmann, C. F. (2013b). Dopamine-dependent architecture of cortico-subcortical network connectivity. Cerebral Cortex, 23(7), 15091516. doi: 10.1093/cercor/bhs136CrossRefGoogle ScholarPubMed
Conio, B., Martino, M., Magioncalda, P., Escelsior, A., Inglese, M., Amore, M., & Northoff, G. (2020). Opposite effects of dopamine and serotonin on resting-state networks: Review and implications for psychiatric disorders. Molecular Psychiatry, 25(1), 8293. doi: 10.1038/s41380-019-0406-4CrossRefGoogle ScholarPubMed
Corbetta, M., & Shulman, G. L. (2011). Spatial neglect and attention networks. Annual Review of Neuroscience, 34, 569599. doi: 10.1146/annurev-neuro-061010-113731CrossRefGoogle ScholarPubMed
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968980. doi: 10.1016/j.neuroimage.2006.01.021CrossRefGoogle ScholarPubMed
Di, X., & Biswal, B. B. (2015). Dynamic brain functional connectivity modulated by resting-state networks. Brain Structure and Function, 220(1), 3746. doi: 10.1007/s00429-013-0634-3CrossRefGoogle ScholarPubMed
Faskowitz, J., Esfahlani, F. Z., Jo, Y., Sporns, O., & Betzel, R. F. (2020). Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture. Nature Neuroscience, 23(12), 16441654. doi: 10.1038/s41593-020-00719-yCrossRefGoogle ScholarPubMed
Friston, K., Brown, H. R., Siemerkus, J., & Stephan, K. E. (2016). The dysconnection hypothesis (2016). Schizophrenia Research, 176(2-3), 8394. doi: 10.1016/j.schres.2016.07.014CrossRefGoogle ScholarPubMed
Giraldo-Chica, M., & Woodward, N. D. (2017). Review of thalamocortical resting-state fMRI studies in schizophrenia. Schizophrenia Research, 180, 5863. doi: 10.1016/j.schres.2016.08.005CrossRefGoogle ScholarPubMed
Gong, Y., & Dai, X. (1984). Application of the short forms of Wechsler intelligence scale. Bulletin of Hunan Medical College, 9(04), 393401. Retrieved from https://kns.cnki.net/kcms2/article/abstract?v=3IEynGI71r-voch0KcV6zKP6EqZDxZ9rc5dKo_EdMnOyZhQGC5HDNZigB60NcDBlLXnSq2xyEpVGiy8g7vAdYN_ZONxaBTzAiTHzFOD719eirpiU44a6DRXPy0Jzq9Warex9twJkufE=&uniplatform=NZKPTGoogle Scholar
Grace, A. A. (2016). Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nature Reviews Neuroscience, 17(8), 524532. doi: 10.1038/nrn.2016.57CrossRefGoogle ScholarPubMed
Gu, Z., Schlesner, M., & Hübschmann, D. (2021). cola: An R/Bioconductor package for consensus partitioning through a general framework. Nucleic Acids Research, 49(3), e15e15. doi: 10.1093/nar/gkaa1146CrossRefGoogle Scholar
Howes, O. D., & Kapur, S. (2009). The dopamine hypothesis of schizophrenia: Version III--The final common pathway. Schizophrenia Bulletin, 35(3), 549562. doi: 10.1093/schbul/sbp006CrossRefGoogle ScholarPubMed
Howes, O. D., McCutcheon, R., Owen, M. J., & Murray, R. M. (2017). The role of genes, stress, and dopamine in the development of schizophrenia. Biological Psychiatry, 81(1), 920. doi: 10.1016/j.biopsych.2016.07.014CrossRefGoogle ScholarPubMed
Howes, O. D., Williams, M., Ibrahim, K., Leung, G., Egerton, A., McGuire, P. K., & Turkheimer, F. (2013). Midbrain dopamine function in schizophrenia and depression: A post-mortem and positron emission tomographic imaging study. Brain, 136(11), 32423251. doi: 10.1093/brain/awt264CrossRefGoogle ScholarPubMed
Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., … Chang, C. (2013). Dynamic functional connectivity: Promise, issues, and interpretations. Neuroimage, 80, 360378. doi: 10.1016/j.neuroimage.2013.05.079CrossRefGoogle ScholarPubMed
Janes, A. C., Peechatka, A. L., Frederick, B. B., & Kaiser, R. H. (2020). Dynamic functioning of transient resting-state coactivation networks in the human connectome project. Human Brain Mapping, 41(2), 373387. doi: 10.1002/hbm.24808CrossRefGoogle ScholarPubMed
Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261276. doi: 10.1093/schbul/13.2.261CrossRefGoogle ScholarPubMed
Keuken, M. C., Bazin, P. L., Crown, L., Hootsmans, J., Laufer, A., Müller-Axt, C., … Forstmann, B. U. (2014). Quantifying inter-individual anatomical variability in the subcortex using 7T structural MRI. Neuroimage, 94, 4046. doi: 10.1016/j.neuroimage.2014.03.032CrossRefGoogle Scholar
Kong, R., Yang, Q., Gordon, E., Xue, A., Yan, X., Orban, C., … Yeo, B. T. T. (2021). Individual-specific areal-level parcellations improve functional connectivity prediction of behavior. Cerebral Cortex, 31(10), 44774500. doi: 10.1093/cercor/bhab101CrossRefGoogle ScholarPubMed
Lefort-Besnard, J., Bassett, D. S., Smallwood, J., Margulies, D. S., Derntl, B., Gruber, O., … Bzdok, D. (2018). Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function. Human Brain Mapping, 39(2), 644661. doi: 10.1002/hbm.23870CrossRefGoogle ScholarPubMed
Li, K., Sweeney, J. A., & Hu, X. P. (2020). Context-dependent dynamic functional connectivity alteration of lateral occipital cortex in schizophrenia. Schizophrenia Research, 220, 201209. doi: 10.1016/j.schres.2020.03.020CrossRefGoogle ScholarPubMed
Li, M., Dahmani, L., Wang, D., Ren, J., Stocklein, S., Lin, Y., … Liu, H. (2021). Co-activation patterns across multiple tasks reveal robust anti-correlated functional networks. Neuroimage, 227, 117680. doi: 10.1016/j.neuroimage.2020.117680CrossRefGoogle ScholarPubMed
Li, M., Deng, W., Li, Y., Zhao, L., Ma, X., Yu, H., … Li, T. (2022). Ameliorative patterns of grey matter in patients with first-episode and treatment-naïve schizophrenia. Psychological Medicine, 53(8), 35003510. doi: 10.1017/s0033291722000058CrossRefGoogle ScholarPubMed
Li, T., Wang, Q., Zhang, J., Rolls, E. T., Yang, W., Palaniyappan, L., … Feng, J. (2017). Brain-wide analysis of functional connectivity in first-episode and chronic stages of schizophrenia. Schizophrenia Bulletin, 43(2), 436448. doi: 10.1093/schbul/sbw099Google ScholarPubMed
Liu, X., & Duyn, J. H. (2013). Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proceedings of the National Academy of Sciences, 110(11), 43924397. doi: 10.1073/pnas.1216856110CrossRefGoogle ScholarPubMed
Liu, X., Zhang, N., Chang, C., & Duyn, J. H. (2018). Co-activation patterns in resting-state fMRI signals. Neuroimage, 180(Pt B), 485494. doi: 10.1016/j.neuroimage.2018.01.041CrossRefGoogle ScholarPubMed
Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869878. doi: 10.1038/nature06976CrossRefGoogle Scholar
Marder, S. R., Ropper, A. H., & Cannon, T. D. (2019). Schizophrenia. New England Journal of Medicine, 381(18), 17531761. doi: 10.1056/NEJMra1808803CrossRefGoogle ScholarPubMed
Martino, M., Magioncalda, P., Yu, H., Li, X., Wang, Q., Meng, Y., … Li, T. (2018). Abnormal resting-state connectivity in a substantia nigra-related striato-thalamo-cortical network in a large sample of first-episode drug-naïve patients with schizophrenia. Schizophrenia Bulletin, 44(2), 419431. doi: 10.1093/schbul/sbx067CrossRefGoogle Scholar
McCutcheon, R. A., Abi-Dargham, A., & Howes, O. D. (2019). Schizophrenia, dopamine and the striatum: From biology to symptoms. Trends in Neurosciences, 42(3), 205220. doi: 10.1016/j.tins.2018.12.004CrossRefGoogle ScholarPubMed
McCutcheon, R., Beck, K., Jauhar, S., & Howes, O. D. (2018). Defining the locus of dopaminergic dysfunction in schizophrenia: A meta-analysis and test of the mesolimbic hypothesis. Schizophrenia Bulletin, 44(6), 13011311. doi: 10.1093/schbul/sbx180CrossRefGoogle ScholarPubMed
McKenna, P. J. (1987). Pathology, phenomenology and the dopamine hypothesis of schizophrenia. British Journal of Psychiatry, 151(3), 288301. doi: 10.1192/bjp.151.3.288CrossRefGoogle ScholarPubMed
Monti, S., Tamayo, P., Mesirov, J., & Golub, T. (2003). Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning, 52(1/2), 91118. doi: 10.1023/a:1023949509487CrossRefGoogle Scholar
Owen, M. J., Sawa, A., & Mortensen, P. B. (2016). Schizophrenia. The Lancet, 388(10039), 8697. doi: 10.1016/s0140-6736(15)01121-6CrossRefGoogle ScholarPubMed
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 21422154. doi: 10.1016/j.neuroimage.2011.10.018CrossRefGoogle ScholarPubMed
Preti, M. G., Bolton, T. A. W., & Van De Ville, D. (2017). The dynamic functional connectome: State-of-the-art and perspectives. Neuroimage, 160, 4154. doi: 10.1016/j.neuroimage.2016.12.061CrossRefGoogle Scholar
Roffman, J. L., Tanner, A. S., Eryilmaz, H., Rodriguez-Thompson, A., Silverstein, N. J., Ho, N. F., … Catana, C. (2016). Dopamine D1 signaling organizes network dynamics underlying working memory. Science Advances, 2(6), e1501672. doi: 10.1126/sciadv.1501672CrossRefGoogle ScholarPubMed
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 5365. doi: 10.1016/0377-0427(87)90125-7CrossRefGoogle Scholar
Schopp, L. H., Callahan, C. D., Johnstone, B., & Schwake, C. J. (1998). Utility of a seven-subtest version of the WAIS-R among an Alzheimer's disease sample. Archives of Clinical Neuropsychology, 13(7), 637643. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/14590625Google ScholarPubMed
Schultz, W. (2010). Dopamine signals for reward value and risk: Basic and recent data. Behavioral and Brain Functions, 6(1), 24. doi: 10.1186/1744-9081-6-24CrossRefGoogle ScholarPubMed
Șenbabaoğlu, Y., Michailidis, G., & Li, J. Z. (2014). Critical limitations of consensus clustering in class discovery. Scientific Reports, 4(1), 6207. doi: 10.1038/srep06207CrossRefGoogle ScholarPubMed
Sporns, O., Faskowitz, J., Teixeira, A. S., Cutts, S. A., & Betzel, R. F. (2021). Dynamic expression of brain functional systems disclosed by fine-scale analysis of edge time series. Network Neuroscience, 5(2), 405433. doi: 10.1162/netn_a_00182CrossRefGoogle ScholarPubMed
Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1(4), e42. doi: 10.1371/journal.pcbi.0010042CrossRefGoogle ScholarPubMed
Stahl, S. M. (2021). Psychosis, schizophrenia, and the neurotransmitter networks dopamine, serotonin, and glutamate. In Stahl, S. M. (Ed.), Stahl's essential psychopharmacology (5th ed., pp. 77158). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Thiebaut de Schotten, M., & Forkel, S. J. (2022). The emergent properties of the connected brain. Science (New York, N.Y.), 378(6619), 505510. doi: 10.1126/science.abq2591CrossRefGoogle ScholarPubMed
Türközer, H. B., Hasoğlu, T., Chen, Y., Norris, L. A., Brown, M., Delaney-Busch, N., … Öngür, D. (2019). Integrated assessment of visual perception abnormalities in psychotic disorders and relationship with clinical characteristics. Psychological Medicine, 49(10), 17401748. doi: 10.1017/s0033291718002477CrossRefGoogle ScholarPubMed
Uddin, L. Q., Yeo, B. T. T., & Spreng, R. N. (2019). Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topography, 32(6), 926942. doi: 10.1007/s10548-019-00744-6CrossRefGoogle ScholarPubMed
van den Brink, R. L., Pfeffer, T., & Donner, T. H. (2019). Brainstem modulation of large-scale intrinsic cortical activity correlations. Frontiers in Human Neuroscience, 13, 340. doi: 10.3389/fnhum.2019.00340CrossRefGoogle ScholarPubMed
Vita, A., De Peri, L., Deste, G., Barlati, S., & Sacchetti, E. (2015). The effect of antipsychotic treatment on cortical gray matter changes in schizophrenia: Does the class matter? A meta-analysis and meta-regression of longitudinal magnetic resonance imaging studies. Biological Psychiatry, 78(6), 403412. doi: 10.1016/j.biopsych.2015.02.008CrossRefGoogle Scholar
Vita, A., De Peri, L., Deste, G., & Sacchetti, E. (2012). Progressive loss of cortical gray matter in schizophrenia: A meta-analysis and meta-regression of longitudinal MRI studies. Translational Psychiatry, 2(11), e190e190. doi: 10.1038/tp.2012.116CrossRefGoogle ScholarPubMed
Wallwork, R. S., Fortgang, R., Hashimoto, R., Weinberger, D. R., & Dickinson, D. (2012). Searching for a consensus five-factor model of the positive and negative syndrome scale for schizophrenia. Schizophrenia Research, 137(1-3), 246250. doi: 10.1016/j.schres.2012.01.031CrossRefGoogle ScholarPubMed
Wang, D., Peng, X., Pelletier-Baldelli, A., Orlov, N., Farabaugh, A., Nasr, S., … Holt, D. J. (2021). Altered temporal, but intact spatial, features of transient network dynamics in psychosis. Molecular Psychiatry, 26(6), 24932503. doi: 10.1038/s41380-020-00983-1CrossRefGoogle ScholarPubMed
Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone, S. V., McCarley, R. W., … Seidman, L. J. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proceedings of the National Academy of Sciences, 106(4), 12791284. doi: 10.1073/pnas.0809141106CrossRefGoogle ScholarPubMed
Winton-Brown, T. T., Fusar-Poli, P., Ungless, M. A., & Howes, O. D. (2014). Dopaminergic basis of salience dysregulation in psychosis. Trends in Neurosciences, 37(2), 8594. doi: 10.1016/j.tins.2013.11.003CrossRefGoogle ScholarPubMed
Yan, C.-G., & Zang, Y.-F. (2010). DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in System Neuroscience, 4, 13. doi: 10.3389/fnsys.2010.00013Google Scholar
Yang, H., Zhang, H., Di, X., Wang, S., Meng, C., Tian, L., & Biswal, B. (2021). Reproducible coactivation patterns of functional brain networks reveal the aberrant dynamic state transition in schizophrenia. Neuroimage, 237, 118193. doi: 10.1016/j.neuroimage.2021.118193CrossRefGoogle ScholarPubMed
Zhang, X., Zhang, Y., Liao, J., Jiang, S., Yan, J., Yue, W., … Yan, H. (2018). Progressive grey matter volume changes in patients with schizophrenia over 6 weeks of antipsychotic treatment and their relationship to clinical improvement. Neuroscience Bulletin, 34(5), 816826. doi: 10.1007/s12264-018-0234-6CrossRefGoogle ScholarPubMed
Supplementary material: File

Deng et al. supplementary material

Deng et al. supplementary material
Download Deng et al. supplementary material(File)
File 585.5 KB