Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T10:41:24.769Z Has data issue: false hasContentIssue false

Three decades of remote sensing subarctic vegetation in northern Russia: A case study in science diplomacy

Published online by Cambridge University Press:  19 October 2022

W.G. Rees*
Affiliation:
Scott Polar Research Institute, University of Cambridge, UK
O.V. Tutubalina
Affiliation:
Geography Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
A. Medvedev
Affiliation:
Geography Faculty, Institute of Geography of the Russian Academy of Sciences, Moscow, Russia
G.J. Marshall
Affiliation:
British Antarctic Survey, Cambridge, UK
E.I. Golubeva
Affiliation:
Geography Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
N. Telnova
Affiliation:
Geography Faculty, Institute of Geography of the Russian Academy of Sciences, Moscow, Russia
M. Zimin
Affiliation:
Geography Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
P. Mikhaylykova
Affiliation:
Geography Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
A. Terskaia
Affiliation:
Geography Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
E. Sklyar
Affiliation:
Scott Polar Research Institute, University of Cambridge, UK
J.A. Tomaney
Affiliation:
Scott Polar Research Institute, University of Cambridge, UK
*
Author for correspondence: W. G. Rees, Email: wgr2@cam.ac.uk

Abstract

The vegetation at and beyond the northern edge of the world’s boreal forest plays an important though imperfectly understood role in the climate system. This is particularly true within Russia, where only a small proportion of the boreal land area has been studied in depth, and little is known about its recent evolution over time. We describe a long-term collaboration between institutions in Russia and the United Kingdom, aimed at developing a better understanding of high-latitude vegetation in Russia using remote sensing methods. The focus of the collaboration has varied over time; in its most recent form, it is concerned with the dynamics of the Russian boreal forest during the 21st century and its relation to climate change. We discuss the support framework within which it has been developed and reflect on its relationship to science diplomacy. We consider the factors that have contributed to the success of a decades-long international collaboration and make recommendations as to how such joint efforts can be encouraged in future.

Type
Commentary
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alekseev, A., Tomppo, E., McRoberts, R. E., & von Gadow, K. (2019). A constructive review of the State Forest Inventory in the Russian Federation. Forest Ecosystems, 6. doi: 10.1186/s40663-019-0165-3 CrossRefGoogle Scholar
Callaghan, T. V., Crawford, R. M. M., Eronen, M., Hofgaard, A., Payette, S., Rees, G., … Werkman, B. (2002). The dynamics of the tundra-taiga boundary: An overview and suggested coordinated and integrated approach to research. Ambio, Special Report, 12, 35.Google Scholar
Callaghan, T. V., Johansson, M., Pchelintseva, Y., & Kirpotin, S. N. (2015). Scientific cooperation throughout the Arctic: The INTERACT experience. In Evengård, B., Nymand Larsen, J., & Paasche, Ø. (Eds.), The New Arctic (pp. 269289). Springer International Publishing. doi: 10.1007/978-3-319-17602-4_20 Google Scholar
Callaghan, T. V., Werkman, B., & Crawford, R. M. M. (2002). The tundra-taiga interface and its dynamics. Ambio, Special Report 12, 614.Google Scholar
Diffenbaugh, N. S., & Field, C. B. (2013). Changes in ecologically critical terrestrial climate conditions. Science, 341(6145), 486. doi: 10.1126/science.1237123 CrossRefGoogle ScholarPubMed
Filipchuk, A., Moiseev, B., Malysheva, N., & Strakhov, V. (2018). Russian forests: A new approach to the assessment of carbon stocks and sequestration capacity. Environmental Development, 26, 6875. doi: 10.1016/j.envdev.2018.03.002 CrossRefGoogle Scholar
Golubeva, E., Hofgaard, A., & Silenchuk, K. (2013). The morphometric structure of the Larix Gmellinii recruitment at the nothern limits of its range in the forest-tundra ecotone. Geography, Environment, Sustainability, 6(3), 8693.CrossRefGoogle Scholar
Golubeva, E. I., Kapitza, A. P., Kravtsova, V. I., Krasnushkin, A. V., Lurie, I. K., Malyshev, V. B., … Williams, M. (2003). Ecology of the North: Remote Sensing of Ecosystem Disturbance (case study of Kola Peninsula) Moscow: Nauchniy Mir.Google Scholar
Golubeva, E. I., Plyushkyavichyute, Yu. A., Rees, W. G., & Tutubalina, O. V. (2010). Remote sensing methods for phytomass estimation and mapping of tundra vegetation. Geography, Environment, Sustainability, 3(3), 413.Google Scholar
Grassi, G., House, J., Kurz, W. A., Cescatti, A., Houghton, R. A., Peters, G. P., … Zaehle, S. (2018). Reconciling global-model estimates and country reporting of anthropogenic forest CO2 sinks. Nature Climate Change, 8(10), 914920. doi: 10.1038/s41558-018-0283-x CrossRefGoogle Scholar
Hindshaw, R. S., Mariash, H., Vick-Majors, T. J., Thornton, A. E., Pope, A., Zaika, Y., … Fugmann, G. (2018). A decade of shaping the futures of polar early career researchers: A legacy of the International Polar Year. Polar Record, 54(5–6), 312323. doi: 10.1017/S0032247418000591 CrossRefGoogle Scholar
Hofgaard, A., Harper, K. A., & Golubeva, E. (2012). The role of the circumarctic forest–tundra ecotone for Arctic biodiversity. Biodiversity, 13(3–4), 174181. doi: 10.1080/14888386.2012.700560 Google Scholar
Hofgaard, A., Rees, G., Tømmervik, H., Tutubalina, O., Golubeva, E., Lukina, N., … Kharuk, V. (2010). Role of disturbed vegetation in mapping the boreal zone in northern Eurasia. Applied Vegetation Science, 13(4), 460472. doi: 10.1111/j.1654-109X.2010.01086.x CrossRefGoogle Scholar
Kapitsa, A. P., Golubeva, E. I., Kravtsova, V. I., Rees, W. G., Spektor, V. A., & Tutubalina, O. V. (1998). Metodi Issledovaniya Sostoyaniya Ekosistem V Noril’skom Promyshlennom Regione [Methods to study the condition of the ecosystem of the Norilsk industrial region]. Third International Symposium on Ecoinformatics Problems, Moscow, 171174.Google Scholar
Kapitsa, A. P., & Rees, W. G. (2003). Ekologiya severa: Distantsionnye metody izuchenniya narushennykh ekosistem—Na primere Kol’skogo Poluostrova [Ecology of the North: Remote Sensing of ecosystem disturbance—Case study of the Kola Peninsula]: Scientific World.Google Scholar
Koppelman, B., Day, N., Davison, N., Elliott, T., & Wilsdon, J. (2010). New Frontiers in Science Diplomacy: Navigating the Changing Balance of Power. London: The Royal Society.Google Scholar
Lukyanov, F. (n.d.). EU-Russia Relations: What Went Wrong? Retrieved 31 October 2021, from https://russiancouncil.ru/en/analytics-and-comments/comments/eu-russia-relations-what-went-wrong/ Google Scholar
Marshall, G. J., Vignols, R. M., & Rees, W. G. (2016). Climate change in the Kola Peninsula, Arctic Russia, during the Last 50 years from meteorological observations. Journal of Climate, 29(18), 68236840. doi: 10.1175/JCLI-D-16-0179.1 CrossRefGoogle Scholar
Mathisen, I. E., Mikheeva, A., Tutubalina, O. V., Aune, S., & Hofgaard, A. (2014). Fifty years of tree line change in the Khibiny Mountains, Russia: Advantages of combined remote sensing and dendroecological approaches. Applied Vegetation Science, 17(1), 616. doi: 10.1111/avsc.12038 CrossRefGoogle Scholar
Pitblado, J. R., & Amiro, B. D. (1982). Landsat mapping of the industrially disturbed vegetation communities of Sudbury, Canada. Canadian Journal of Remote Sensing, 8(1), 1728. doi: 10.1080/07038992.1982.10855020 CrossRefGoogle Scholar
Polar Regions Department, Foreign and Commonwealth Office. (2018). Beyond the Ice: UK Policy Towards the Arctic London: HM Government.Google Scholar
Previdi, M., Janoski, T. P., Chiodo, G., Smith, K. L., & Polvani, L. M. (2020). Arctic amplification: A Rapid response to radiative forcing. Geophysical Research Letters, 47(17), e2020GL089933. doi: 10.1029/2020GL089933 CrossRefGoogle Scholar
Rees, W. G., Hofgaard, A., Boudreau, S., Cairns, D. M., Harper, K., Mamet, , … Tutubalina, O. (2020). Is subarctic forest advance able to keep pace with climate change? Global Change Biology. doi: 10.1111/gcb.15113 CrossRefGoogle ScholarPubMed
Rees, W. G., & Kapitsa, A. P. (1994). Industrial pollution in the Kol’skiy Poluostrov, Russia. Polar Record, 30, 181188.CrossRefGoogle Scholar
Rees, W. G., Stammler, F. M., Danks, F. S., & Vitebsky, P. (2007). Vulnerability of European reindeer husbandry to global change. Climatic Change, 87(1), 199. doi: 10.1007/s10584-007-9345-1 CrossRefGoogle Scholar
Rees, W. G., & Williams, M. (1997). Monitoring changes in land cover induced by atmospheric pollution in the Kola Peninsula, Russia, using LANDSAT MSS data. International Journal of Remote Sensing, 18, 17031723.CrossRefGoogle Scholar
Roop, H. A., Wesche, G., Azinhaga, P. F., Trummel, B., & Xavier, J. C. (2019). Building collaborative networks across disciplines: A review of polar educators international’s first five years. POLAR RECORD, 55(4), 220226. doi: 10.1017/S003224741800061X CrossRefGoogle Scholar
Royal Society. (n.d.). Miliband Urges Greater Role for Science in Diplomacy—Science News | Royal Society. Retrieved 14 April 2021, from https://royalsociety.org/news/2010/science-diplomacy/ Google Scholar
Russia, T. of the O. W. of the P. of. (n.d.-a). Leaders Summit on Climate: President of Russia. Retrieved 29 April 2021, from http://en.kremlin.ru/events/president/news/65425 Google Scholar
Russia, T. of the O. W. of the P. of. (n.d.-b). Strategy for Developing the Russian Arctic Zone and Ensuring National Security until 2035 Approved. President of Russia. Retrieved 29 April 2021, from http://en.kremlin.ru/acts/news/64274 Google Scholar
Toutoubalina, O. V., & Rees, W. G. (1999). Remote sensing of industrial impact on Arctic vegetation around Noril€sk, northern Siberia: Preliminary results. International Journal of Remote Sensing, 20, 29792990.CrossRefGoogle Scholar
UK COP 26. (2021). Glasgow Leaders’ Declaration on Forests and Land Use. UN Climate Change Conference (COP26) at the SEC – Glasgow 2021. https://ukcop26.org/glasgow-leaders-declaration-on-forests-and-land-use/ Google Scholar
Vikulina, M. A., Vashchalova, T. V., Tutubalina, O. V., Rees, W. G., & Zaika, Y. V. (2021). Moscow University’s field station in the Khibiny Mountains, Russian Arctic: A 70-year history to the present day. Polar Record, 57, e10. doi: 10.1017/S0032247421000012 CrossRefGoogle Scholar
Walton, D., Xavier, J., May, I., & Huffman, L. (2013). Polar educators international—A new initiative for schools. Antarctic Science, 25(4), 473. doi: 10.1017/S0954102013000485 CrossRefGoogle Scholar
Zöckler, C., Miles, L., Fish, L., Wolf, A., Rees, G., & Danks, F. (2008). Potential impact of climate change and reindeer density on tundra indicator species in the Barents Sea region. Climatic Change, 87(1), 119130. doi: 10.1007/s10584-007-9344-2 CrossRefGoogle Scholar
МИД заявил о глубоком кризисе в отношениях с Великобританией . (20210325T1224). РИА Новости. https://ria.ru/20210325/krizis-1602784365.html Google Scholar