Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T15:51:21.192Z Has data issue: false hasContentIssue false

Purification of a chymotrypsin-like enzyme present on adult Schistosoma mansoni worms from infected mice and its characterization as a host carboxylesterase

Published online by Cambridge University Press:  29 February 2016

JOSEPH E. IGETEI*
Affiliation:
School of Life Sciences, University Park, University of Nottingham, Nottinghamshire NG7 2RD, UK
SUSAN LIDDELL
Affiliation:
School of Biosciences, Sutton Bonington Campus, University of NottinghamLE12 5RD, UK
MARWA EL-FAHAM
Affiliation:
School of Life Sciences, University Park, University of Nottingham, Nottinghamshire NG7 2RD, UK
MICHAEL J. DOENHOFF
Affiliation:
School of Life Sciences, University Park, University of Nottingham, Nottinghamshire NG7 2RD, UK
*
*Corresponding author: School of Life Sciences, University of Nottingham, Nottinghamshire NG7 2RD, UK. Tel: +447586358083. Fax: +441159513251. E-mail: josig4christ@gmail.com

Summary

A serine protease-like enzyme found in detergent extracts of Schistosoma mansoni adult worms perfused from infected mice has been purified from mouse blood and further characterized. The enzyme is approximately 85 kDa and hydrolyses N-acetyl-DL-phenylalanine β-naphthyl–ester, a chromogenic substrate for chymotrypsin-like enzymes. The enzyme from S. mansoni worms appears to be antigenically and enzymatically similar to a molecule that is present in normal mouse blood and so is seemingly host-derived. The enzyme was partially purified by depleting normal mouse serum of albumin using sodium chloride and cold ethanol, followed by repeated rounds of purification by one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis. The purified material was subjected to tandem mass spectrometry and its derived peptides found to belong to mouse carboxylesterase 1C. Its ability to hydrolyse α- or β-naphthyl acetates, which are general esterase substrates, has been confirmed. A similar carboxylesterase was purified and characterized from rat blood. Additional evidence to support identification of the enzyme as a carboxylesterase has been provided. Possible roles of the enzyme in the mouse host–parasite relationship could be to ease the passage of worms through the host's blood vessels and/or in immune evasion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bahar, F. G., Ohura, K., Ogihara, T. and Imai, T. (2012). Species difference of esterase expression and hydrolase activity in plasma. Journal of Pharmaceutical Sciences 101, 39793988.Google Scholar
Bailey, G. S. (1996). Ouchterlony double immunodiffusion”. In The Protein Protocols Handbook (pdf). VII: Immunochemical Techniques (ed. Walker John, M.), pp. 749752. Humana Press, Totowa, New Jersey.Google Scholar
Bernhard, O. K., Kapp, E. A. and Simpson, R. J. (2007). Enhanced analysis of the mouse plasma proteome using cysteine-containing tryptic glycopeptides. Journal of Proteome Research 6, 987995.Google Scholar
Berriman, M., Haas, B. J., LoVerde, P. T., Wilson, R. A., Dillon, G. P., Cerqueira, G. C., Mashiyama, S. T., Al-Lazikani, B., Andrade, L. F., Ashton, P. D., Aslett, M. A., Bartholomeu, D. C., Blandin, G., Caffrey, C. R., Coghlan, A., Coulson, R., Day, T. A., Delcher, A., DeMarco, R., Djikeng, A., Eyre, T., Gamble, J. A., Ghedin, E., Gu, Y., Hertz-Fowler, C., Hirai, H., Hirai, Y., Houston, R., Ivens, A., Johnston, D. A., Lacerda, D., Macedo, C. D., McVeigh, P., Ning, Z., Oliveira, G., Overington, J. P., Parkhill, J., Pertea, M., Pierce, R. J., Protasio, A. V., Quail, M. A., Rajandream, M. A., Rogers, J., Sajid, M., Salzberg, S. L., Stanke, M., Tivey, A. R., White, O., Williams, D. L., Wortman, J., Wu, W., Zamanian, M., Zerlotini, A., Fraser-Liggett, C. M., Barrell, B. G. and El-Sayed, N. M. (2009). The genome of the blood fluke Schistosoma mansoni . Nature 460, 352358.Google Scholar
Beyer, N. H., Schou, C., Houen, G. and Heegaard, N. H. (2008). Extraction and identification of electroimmunoprecipitated proteins from agarose gels. Journal of Immunological Methods 330, 2433.Google Scholar
Brayer, G. D., Delbaere, L. T. J. and James, M. N. G. (1979). Molecular-structure of the alpha-lytic protease from myxobacter-495 at 2–8-a resolution. Journal of Molecular Biology 131, 743775.Google Scholar
Brouwers, J. F., Smeenk, I. M., van Golde, L. M. and Tielens, A. G. (1997). The incorporation, modification and turnover of fatty acids in adult Schistosoma mansoni . Molecular and Biochemical Parasitology 88, 175185.CrossRefGoogle ScholarPubMed
Cerasoli, D. M., Maxwell, D. M. and Lenz, D. E. (2000). Generation of genetically modified mice with low serum carboxylesterase. FASEB Journal 14, A1476A1476.Google Scholar
Chen, Y. Y., Lin, S. Y., Yeh, Y. Y., Hsiao, H. H., Wu, C. Y., Chen, S. T. and Wang, A. H. (2005). A modified protein precipitation procedure for efficient removal of albumin from serum. Electrophoresis 26, 21172127.Google Scholar
Choudhury, S. R. (1974). Isolation and properties of an esterase isoenzyme of rat serum. Histochemical Journal 6, 369372.Google Scholar
Cioli, D., Knopf, P. M. and Senft, A. W. (1977). A study of Schistosoma mansoni transferred into permissive and nonpermissive hosts. International Journal of Parasitology 7, 293297.Google Scholar
Colantonio, D. A., Dunkinson, C., Bovenkamp, D. E. and Van Eyk, J. E. (2005). Effective removal of albumin from serum. Proteomics 5, 38313835.CrossRefGoogle ScholarPubMed
Damian, R. T., Greene, N. D. and Hubbard, W. J. (1973). Occurrence of mouse alpha 2-macroglobulin antigenic determinants on Schistosoma-mansoni adults, with evidence on their nature. Journal of Parasitology 59, 6473.CrossRefGoogle Scholar
Darani, H. Y. and Doenhoff, M. J. (2008). An association between Schistosoma mansoni worms and an enzymatically-active protease/peptidase in mouse blood. Parasitology 135, 467472.CrossRefGoogle Scholar
Darani, H. Y., Curtis, R. H., McNeice, C., Price, H. P., Sayers, J. R. and Doenhoff, M. J. (1997). Schistosoma mansoni: anomalous immunogenic properties of a 27 kDa larval serine protease associated with protective immunity. Parasitology 115 (Pt 3), 237247.CrossRefGoogle ScholarPubMed
Dinguirard, N. and Yoshino, T. P. (2006). Potential role of a CD36-like class B scavenger receptor in the binding of modified low-density lipoprotein (acLDL) to the tegumental surface of Schistosoma mansoni sporocysts. Molecular and Biochemical Parasitology 146, 219230.Google Scholar
Doenhoff, M., Bickle, Q., Long, E., Bain, J. and McGregor, A. (1978). Factors affecting the acquisition of resistance against Schistosoma mansoni in the mouse. I. Demonstration of resistance to reinfection using a model system that involves perfusion of mice within three weeks of challenge. Journal of Helminthology 52, 173186.Google Scholar
Doenhoff, M. J., Modha, J., Curtis, R. H. and Adeoye, G. O. (1988). Immunological identification of Schistosoma mansoni peptidases. Molecular and Biochemical Parasitology 31, 233240.Google Scholar
Dunne, D. W., Agnew, A. M., Modha, J. and Doenhoff, M. J. (1986). Schistosoma mansoni egg antigens: preparation of rabbit antisera with monospecific immunoprecipitating activity, and their use in antigen characterization. Parasite Immunology 8, 575586.Google Scholar
Duysen, E. G., Koentgen, F., Wiliams, G. R., Timperey, C. M., Schopfer, L. M., Cerasoli, D. M. and Lockridge, O. (2011). Production of ES1 plasma carboxylesterase knockout mice for toxicity studies. Chemical Research in Toxicology 24, 18911898.Google Scholar
Furlong, S. T. (1991). Unique roles for lipids in Schistosoma mansoni . Parasitology Today 7, 5962.CrossRefGoogle ScholarPubMed
Furlong, S. T., Thibault, K. S. and Rogers, R. A. (1992). Fluorescent phospholipids preferentially accumulate in sub-tegumental cells of schistosomula of Schistosoma mansoni . Journal of Cell Science 103 (Pt 3), 823830.Google Scholar
Genetta, T. L., Deustachio, P., Kadner, S. S. and Finlay, T. H. (1988). Cdna cloning of esterase-1, the major esterase-activity in mouse plasma. Biochemical and Biophysical Research Communications 151, 13641370.Google Scholar
Ghesquiere, B., Van Damme, J., Martens, L., Vandekerckhove, J. and Gevaert, K. (2006). Proteome-wide characterization of N-glycosylation events by diagonal chromatography. Journal of Proteome Research 5, 24382447.CrossRefGoogle ScholarPubMed
Goudie, R. B., Horne, C. H. and Wilkinson, P. C. (1966). A simple method for producing antibody specific to a single selected diffusible antigen. Lancet 2, 12241226.Google Scholar
Holmes, R. S., Wright, M. W., Laulederkind, S. J., Cox, L. A., Hosokawa, M., Imai, T., Ishibashi, S., Lehner, R., Miyazaki, M., Perkins, E. J., Potter, P. M., Redinbo, M. R., Robert, J., Satoh, T., Yamashita, T., Yan, B., Yokoi, T., Zechner, R. and Maltais, L. J. (2010). Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins. Mammalian Genome 21, 427441.Google Scholar
Hosokawa, M. (2008). Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules 13, 412431.CrossRefGoogle ScholarPubMed
Kemp, W. M., Damian, R. T., Greene, N. D. and Lushbaugh, W. B. (1976). Immunocytochemical localization of mouse alpha 2-macroglobulin-like antigenic determinants on schistosoma-mansoni adults. Journal of Parasitology 62, 413419.Google Scholar
Krishnasamy, S., Teng, A. L., Dhand., R., Schultz., R. M. and NJ, G. (1998). Molecular cloning, characterization, and differential expression pattern of mouse lung surfactant convertase. American Journal of Physiology 275(5 Pt 1), L969L975.Google Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.CrossRefGoogle ScholarPubMed
Li, B., Sedlacek, M., Manoharan, I., Boopathy, R., Duysen, E. G., Masson, P. and Lockridge, O. (2005). Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Biochemical Pharmacology 70, 16731684.Google Scholar
Mancini, G., Carbonara, A. O. and Heremans, J. F. (1965). Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 2, 235254.Google Scholar
McLaren, D. J., Clegg, J. A. and Smithers, S. R. (1975). Acquisition of host antigens by young Schistosoma mansoni in mice: correlation with failure to bind antibody in vitro . Parasitology 70, 6775.Google Scholar
Meyer, F., Meyer, H. and Bueding, E. (1970). Lipid metabolism in the parasitic and free-living flatworms, Schistosoma mansoni and Dugesia dorotocephala. Biochimica et Biophysica Acta 210, 257266.Google Scholar
Modha, J., Parikh, V., Gauldie, J. and Doenhoff, M. J. (1988). An association between schistosomes and contrapsin, a mouse serine protease inhibitor (serpin). Parasitology 96 (Pt 1), 99109.CrossRefGoogle ScholarPubMed
Munger, J. S., Shi, G. P., Mark, E. A., Chin, D. T., Gerard, C. and Chapman, H. A. (1991). A serine esterase released by human alveolar macrophages is closely related to liver microsomal carboxylesterases. Journal of Biological Chemistry 266, 1883218838.Google Scholar
Otto, J., Ronai, A. and von Deimling, O. (1981). Purification and characterization of esterase 1F, the albumin esterase of the house mouse (Mus musculus). European Journal of Biochemistry 116, 285291.Google Scholar
Papayannopoulos, I. A. (1995). The interpretation of collision-induced dissociation tandem masssSpectra of peptides. Mass Spectrometry Reviews 14, 4973.Google Scholar
Pearse, A. G. E. (1968). Histochemistry, Theoretical and Applied. Little, Brown; distributed by William & Wilkins, Boston.Google Scholar
Satoh, T. and Hosokawa, M. (2006). Structure, function and regulation of carboxylesterases. Chemico-Biological Interactions 162, 195211.Google Scholar
Simpson, A. J., Hackett, F., Kelly, C., Knight, M., Payares, G., Omer-Ali, P., Lillywhite, J., Fleck, S. L. and Smithers, S. R. (1986). The recognition of Schistosoma mansoni surface antigens by antibodies from patients infected with S. mansoni and S. haematobium . Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 261270.Google Scholar
Skelly, P. J. (2004). Intravascular schistosomes and complement. Trends in Parasitology 20, 370374.Google Scholar
Smith, T. M., Brooks, T. J. Jr. and Lockard, V. G. (1970). In vitro studies on cholesterol metabolism in the blood fluke Schistosoma mansoni . Lipids 5, 854856.Google Scholar
Smithers, S. R. and Terry, R. J. (1965). The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of the adult worms. Parasitology 55, 695700.Google Scholar
Smithers, S. R., Terry, R. J. and Hockley, D. J. (1969). Host antigens in schistosomiasis. Proceedings of the Royal Society of London B, Biological Sciences 171, 483494.Google Scholar
Standley, C. J., Mugisha, L., Dobson, A. P. and Stothard, J. R. (2012). Zoonotic schistosomiasis in non-human primates: past, present and future activities at the human-wildlife interface in Africa. Journal of Helminthology 86, 131140.CrossRefGoogle ScholarPubMed
Steen, H. and Mann, M. (2004). The ABC's (and XYZ's) of peptide sequencing. Nature Reviews Molecular Cell Biology 5, 699711.Google Scholar
Stoops, J. K., Horgan, D. J., Runnegar, M. T., De Jersey, J., Webb, E. C. and Zerner, B. (1969). Carboxylesterases (EC 3·1·1). Kinetic studies on carboxylesterases. Biochemistry 8, 20262033.Google Scholar
Studier, F. W. (1973). Analysis of bacteriophage T7 early RNAs and proteins on slab gels. Journal of Molecular Biology 79, 237248.Google Scholar
Takai, S., Matsuda, A., Usami, Y., Adachi, T., Sugiyama, T., Katagiri, Y., Tatematsu, M. and Hirano, K. (1997). Hydrolytic profile for ester- or amide-linkage by carboxylesterases pI 5·3 and 4·5 from human liver. Biological and Pharmaceutical Bulletin 20, 869873.Google Scholar
Xie, M., Yang, D., Liu, L., Xue, B. and Yan, B. (2002). Human and rodent carboxylesterases: immunorelatedness, overlapping substrate specificity, differential sensitivity to serine enzyme inhibitors, and tumor-related expression. Drug Metabolism and Disposition 30, 541547.Google Scholar