Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-17T22:18:30.023Z Has data issue: false hasContentIssue false

Abundance of the sponge Hymeniacidon cf. perlevis in a stressful environment of Patagonia: relationships with Ulva lactuca and physical variables

Published online by Cambridge University Press:  11 August 2015

Marianela Gastaldi*
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, Piso 5, Capital Federal, Argentina Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, San Martín 247, (8520) San Antonio Oeste, Río Negro, Argentina
Fausto Nahuel Firstater
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, Piso 5, Capital Federal, Argentina Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, San Martín 247, (8520) San Antonio Oeste, Río Negro, Argentina
Pedro Daleo
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, Piso 5, Capital Federal, Argentina Instituto de Investigaciones Marinas y Costera (IIMYC-CONICET), Peña 4046, Mar del Plata, Buenos Aires, Argentina
Maite Andrea Narvarte
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, Piso 5, Capital Federal, Argentina Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, San Martín 247, (8520) San Antonio Oeste, Río Negro, Argentina
*
Correspondence should be addressed to:M. Gastaldi, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, Piso 5, Capital Federal, Argentina email: marianelagastaldi@yahoo.es

Abstract

Understanding the variables (biotic or abiotic) controlling coastal communities is the main goal of ecology research and it is crucial to predict how communities will evolve under the increasing pressure on coastal systems by human activities. The general aims of this study were to assess the variables affecting the distribution of the fast-growing sponge Hymeniacidon cf. perlevis, and to evaluate if physical stressful conditions have an influence in the relationship between Hymeniacidon and the sea lettuce Ulva lactuca. Specifically, the aims were to evaluate the abundance patterns of Hymeniacidon and Ulva and to assess the relationship of Ulva and physical variables on the abundance of Hymeniacidon at both intertidal and subtidal. Hymeniacidon and Ulva showed opposite abundance patterns. Hymeniacidon was more abundant in sites without Ulva, and negatively correlated with Ulva abundance at both heights. Intertidal Hymeniacidon abundance was not correlated with physical variables, but subtidal Hymeniacidon was.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdo, D.A. (2007) Endofauna differences between two temperate marine sponges (Demospongiae; Haplosclerida; Chalinidae) from southwest Australia. Marine Biology 152, 845854.CrossRefGoogle Scholar
Altamirano, M., Flores-Moya, A. and Figueroa, F.L. (2000) Long-term effects of natural sunlight under various ultraviolet radiation conditions on growth and photosynthesis of intertidal Ulva rigida (Chlorophyceae) cultivated in situ. Botanica Marina 43, 119126.CrossRefGoogle Scholar
Ávila, E., Blancas-Gallangos, N.I., Riosmena-Rodríguez, R. and Paul-Chávez, L. (2010) Sponges associated with Sargassum spp. (Phaeophyceae: Fucales) from the south-western Gulf of California. Journal of the Marine Biological Association of the United Kingdom 90, 193202.CrossRefGoogle Scholar
Bell, J. (2002) The sponge community in a semi-submerged temperate sea cave: density, diversity and richness. Marine Ecology 23, 297311.CrossRefGoogle Scholar
Bell, J. (2008a) Sponges as agents of biological disturbance. Marine Ecology Progress Series 368, 127135.CrossRefGoogle Scholar
Bell, J. (2008b) The functional role of marine sponges. Estuarine, Coastal and Shelf Science 79, 341353.CrossRefGoogle Scholar
Bell, J. and Barnes, D.K.A. (2000) The influences of bathymetry and flow regime upon the morphology of sublittoral sponge communities. Journal of the Marine Biological Association of the United Kingdom 80, 707718.CrossRefGoogle Scholar
Bertness, M.D. and Callaway, R. (1994) Positive interactions in communities: a post cold war perspective. Trends in Ecology and Evolution 9, 191193.CrossRefGoogle Scholar
Bertness, M.D., Crain, C.M., Silliman, B.R., Bazterrica, M.C., Reyna, M.V., Hidalgo, F. and Farina, J.K. (2006) The community structure of western Atlantic Patagonian rocky shores. Ecological Monographs 76, 439460.CrossRefGoogle Scholar
Bertness, M.D., Leonard, G.H., Levine, J.M., Schmidt, P.M. and Ingraham, A.O. (1999) Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology 80, 27112726.CrossRefGoogle Scholar
Bruno, J.F., Stachowicz, J.J. and Bertness, M.D. (2003) Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution 18, 119125.CrossRefGoogle Scholar
Cárdenas, C.A., Davy, S.K. and Bell, J.J. (2012) Correlations between algal abundance, environmental variables and sponge distribution patterns on southern hemisphere temperate rocky reefs. Aquatic Biology 16, 229239.CrossRefGoogle Scholar
Cárdenas, C.A., Davy, S.K. and Bell, J.J. (2015) Influence of canopy-forming algae on temperate sponge assemblages. Journal of the Marine Biological Association of the United Kingdom 90, 112.Google Scholar
Daleo, P., Escapa, M., Alberti, J. and Iribarne, O. (2006) Negative effects of an autogenic ecosystem engineer: interactions between coralline turf and an ephemeral green alga. Marine Ecology Progress Series 315, 6773.CrossRefGoogle Scholar
Díaz, M.C. and Ward, B.B. (1997) Sponge mediated nitrification in benthic tropical communities. Marine Ecology Progress Series 156, 97107.CrossRefGoogle Scholar
Easson, C.G., Slattery, M., Baker, D.M. and Gochfeld, D.J. (2014) Complex ecological associations: competition and facilitation in a sponge-algal interaction. Marine Ecology Progress Series 507, 153167.CrossRefGoogle Scholar
Freeman, C. and Thacker, R. (2011) Complex interactions between marine sponges and their symbiotic microbial communities. Limnology and Oceanography 56, 15771585.CrossRefGoogle Scholar
Fu, W., Sun, L., Zhang, X. and Zhang, W. (2006) Potential of the marine sponge Hymeniacidon perleve as a bioremediator of pathogenic bacteria in integrated aquaculture ecosystem. Biotechnology and Bioengineering 93, 11121122.CrossRefGoogle Scholar
Gaino, E., Cardone, F. and Correiro, G. (2010) Reproduction of the intertidal sponge Hymeniacidon perlevis (Montagu) along a bathymetric gradient. Open Marine Biology Journal 4, 4756.CrossRefGoogle Scholar
Gao, S., Shen, S., Wang, G., Niu, J., Lin, A. and Pan, G. (2011) PSI-driven cyclic electron flow allow intertidal macro-algae Ulva sp. (Chlorophyta) to survive in desiccated conditions. Plant & Cell Physiology 52, 885893.CrossRefGoogle ScholarPubMed
Genchi, S.A., Carbone, M.E., Piccolo, M.C. and Perillo, G.M.E. (2010) Déficit hídrico en San Antonio Oeste, Argentina. Revista de Climatología 10, 2943.Google Scholar
González, R., Narvarte, M. and Verona, C. (2010) Principios, lineamientos generales y procedimientos para la elaboración, adopción, implementación, evaluación y revisión de los Planes de Manejo Ecosistémico para la pesca marítima de captura en el Golfo San Matías. ECOPES (Iniciativa para un Ecosistema Pesquero Sustentable). IBMPAS, UNCO.Google Scholar
González-Rivero, M., Ferrari, R., Schönberg, C.H.L. and Mumby, P.J. (2012) Impacts of macroalgal competition and parrotfish predation on the growth of a common bioeroding sponge. Marine Ecology Progress Series 444, 133142.CrossRefGoogle Scholar
Hay, M.E. (1996) Marine chemical ecology: what's known and what's next? Journal of Experimental Marine Biology and Ecology 200, 103134.CrossRefGoogle Scholar
Henley, W.J., Lindley, S.T., Levavasseur, G., Osmond, C.B. and Ramus, J. (1992) Photosynthetic response of Ulva rotundata to light and temperature during emersion on an intertidal sand flat. Oecologia 89, 516523.CrossRefGoogle Scholar
Jokiel, P.L. (1980) Solar ultraviolet radiation and coral reef epifauna. Science 207, 10691071.CrossRefGoogle ScholarPubMed
Lopez-Victoria, M., Zea, S. and Weil, E. (2006) Competition for space between encrusting excavating Caribbean sponges and other coral reef organisms. Marine Ecology Progress Series 312, 313321.CrossRefGoogle Scholar
Lucas, A.J., Guerrero, R.A., Mianzan, H.W., Acha, E.M. and Lasta, C.A. (2005) Coastal oceanographic regimes of the Northern Argentine continental shelf (34–43°S). Estuarine, Coastal and Shelf Science 65, 405420.CrossRefGoogle Scholar
Maldonado, M., Cao, H., Cao, X., Song, Y., Qu, Y. and Zhang, W. (2012) Experimental silicon demand by the sponge Hymeniacidon perlevis reveals chronic limitation in field populations. Hydrobiologia 687, 251257.CrossRefGoogle Scholar
Maldonado, M., Giraud, K. and Carmona, C. (2008) Effects of sediment on the survival of asexually produced sponge recruits. Marine Biology 154, 631641.CrossRefGoogle Scholar
Martinetto, P., Daleo, P., Escapa, M., Alberti, J., Isacch, J., Fanjul, E., Botto, F., Piriz, M., Ponce, G., Casas, G. and Iribarne, O. (2010) High abundance and diversity of consumers associated with eutrophic areas in a semi-desert macrotidal coastal ecosystem in Patagonia, Argentina. Estuarine, Coastal and Shelf Science 88, 357364.CrossRefGoogle Scholar
Martinetto, P., Teichberg, M., Valiela, I., Montemayor, D. and Iribarne, O. (2011) Top-down and bottom-up regulation in a high nutrient-high herbivory coastal ecosystem. Marine Ecology Progress Series 432, 6982.CrossRefGoogle Scholar
Molina-Montenegro, M.A., Muñoz, A.A., Badano, E.I., Morales, B.W., Fuentes, K.M. and Cavieres, L.A. (2005) Positive associations between macroalgal species in a rocky intertidal zone and their effects on the physiological performance of Ulva lactuca. Marine Ecology Progress Series 292, 173180.CrossRefGoogle Scholar
National Meteorological Service. http://www.smn.gov.ar/Google Scholar
Paine, R.T. (1966) Food web complexity and species diversity. American Naturalist 100, 6575.CrossRefGoogle Scholar
Palacios, J. (1978) Variación de la fauna de invertebrados del área estuárica de la Ciénaga Grande de Santa Marta en relación con los cambios de salinidad. Anales del Instituto de Investigaciones Marinas de Punta de Betin 10, 111126.Google Scholar
Palumbi, S.R. (1985) Spatial variation in an alga-sponge commensalism and the evolution of ecological interactions. American Naturalist 126, 267274.CrossRefGoogle Scholar
Pile, A.J., Patterson, M.R. and Witman, J.D. (1996) In situ grazing on plankton <10 μm by the boreal sponge Mycale lingua. Marine Ecology Progress Series 141, 95102.CrossRefGoogle Scholar
Photobiological Station of Playa Unión. http://www.efpu.org.ar/.Google Scholar
Power, M.E., Tilman, D., Estes, J.A., Menge, B.A., Bond, W.J., Mills, G.D., Castilla, J.C., Lubchenco, J. and Paine, R.T. (1996) Challenges in the quest for keystones. Biological Science 46, 609620.Google Scholar
Preciado, I. and Maldonado, M. (2005) Reassessing the spatial relationship between sponges and macroalgae in sublittoral rocky bottoms: a descriptive approach. Helgoland Marine Research 59, 141150.CrossRefGoogle Scholar
Rasband, W.S. (1997–2014) ImageJ. Bethesda, MD: U. S. National Institutes of Health. http://imagej.nih.gov/ij/.Google Scholar
Reiswig, H.M. (1971) Particle feeding in natural populations of three marine demosponges. Biological Bulletin 141, 568591.CrossRefGoogle Scholar
Rützler, K. (1995) Low-tide exposure of sponges in a Caribbean mangrove community. Marine Ecology 16, 165179.CrossRefGoogle Scholar
Silliman, B.R., Bertness, M.D., Altieri, A.H., Griffin, J.N., Bazterrica, M.C., Hidalgo, F.J., Crain, C.M. and Reyna, M.V. (2011) Whole-community facilitation regulates biodiversity on Patagonian rocky shores. PLoS ONE 6, e24502.CrossRefGoogle ScholarPubMed
Steindler, L., Beer, S. and Ilan, M. (2002) Photosymbiosis in intertidal and subtidal tropical sponges. Symbiosis 33, 263273.Google Scholar
Stone, A.R. (1970) Growth and reproduction of Hymeniacidon perleve (Montagu) (Porifera) in Langstone Harbour, Hampshire. Journal of Zoology 161, 443459.CrossRefGoogle Scholar
Tanaka, K. (2002) Growth dynamics and mortality of the intertidal encrusting sponge Halichondria okadai (Demospongiae, Halichondrida). Marine Biology 140, 383389.Google Scholar
Teichberg, M., Fox, S.E., Olsen, Y.S., Valiela, I., Martinetto, P., Iribarne, O., Muto, E.Y., Petti, M.A.V., Corbisier, T.N., Soto-Jiménez, M., Páez-Osuna, F., Castro, P., Freitas, H., Zitelli, A., Cardinaletti, M. and Tagliapietra, D. (2010) Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp. Global Change Biology 16, 26242637.CrossRefGoogle Scholar
Trussell, G.C., Lesser, M.P., Patterson, M.R. and Genovese, S.J. (2006) Depth-specific differences in growth of the reef sponge Callyspongia vaginalis: role of bottom-up effects. Marine Ecology Progress Series 323, 149158.CrossRefGoogle Scholar
Valiela, I., Mc Clelland, J., Hauxwell, J., Behr, P.J., Hersh, D. and Foreman, K. (1997) Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42, 11051118.CrossRefGoogle Scholar
Wilkinson, C.R. and Evans, E. (1989) Sponge distribution across Davies Reef, Great Barrier Reef relative to location, depth and water movement. Coral Reefs 8, 17.CrossRefGoogle Scholar
Wulff, J. (2006) Ecological interactions of marine sponges. Canadian Journal of Zoology 84, 146166.CrossRefGoogle Scholar
Wulff, J. (2012) Ecological interactions and the distribution, abundance, and diversity of sponges. Advances in Marine Biology 61, 273344.CrossRefGoogle ScholarPubMed
Zar, J. (1999) Biostatistical analysis, 4th edn.Upper Saddle River, NJ: Prentice-Hall.Google Scholar