Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T21:55:23.397Z Has data issue: false hasContentIssue false

Administration of the nematophagous fungus Duddingtonia flagrans to goats: an evaluation of the impact of this fungus on the degradation of faeces and on free-living soil nematodes

Published online by Cambridge University Press:  21 March 2011

C. Paraud*
Affiliation:
Agence Nationale de Sécurité Sanitaire, Laboratoire de Niort, 60 rue de Pied de Fond, BP 3081 79012Niort Cedex, France
R. Lorrain
Affiliation:
Centre d'Expérimentation pour la Pépinière Méridionale, Domaine de la Durette, RN 7, 84140Montfavet, France
I. Pors
Affiliation:
Agence Nationale de Sécurité Sanitaire, Laboratoire de Niort, 60 rue de Pied de Fond, BP 3081 79012Niort Cedex, France
C. Chartier
Affiliation:
Agence Nationale de Sécurité Sanitaire, Laboratoire de Niort, 60 rue de Pied de Fond, BP 3081 79012Niort Cedex, France
*
*Fax: +33-5-49794219 E-mail: carine.paraud@anses.fr

Abstract

The environmental impact of Duddingtonia flagrans, a potential biological control agent for nematode parasites, was tested in a 2-year-plot study using goat faeces. The trial assessed the impact of fungal presence on the disintegration of faeces and on non-target, free-living soil nematode populations. Three groups of goats experimentally infected by Trichostrongylus colubriformis received three different doses of D. flagrans chlamydospores (0 chlamydospores/kg body weight (BW), 0.5 × 106 chlamydospores/kg BW or 5 × 106 chlamydospores/kg BW). One hundred grams of faeces containing T. colubriformis eggs and D. flagrans chlamydospores at three different concentrations were deposited on pasture plots on four different occasions: May 2003, September 2003, June 2004 and September 2004. Faeces were weighed 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 weeks after deposit and immediately afterwards replaced to their initial positions. In addition, soil samples were taken just below faecal deposits to evaluate the impact of fungal presence on non-target free-living nematodes. Results showed that there was no treatment effect on the pellet degradation rate. Analysis of soil nematode fauna failed to demonstrate any effect of the dose rate of 0.5 × 106 chlamydospores/kg BW, while a reduction of the number of free-living nematodes was seen for the maximal chlamydospore concentration at autumn sets.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baev, P.V. & Penev, L.D. (1993) Biodiv Version 4.1, Pensoft, Sofia, Bulgaria (Esoftware, USA).Google Scholar
Bardgett, R.D., Cook, R., Yeates, G.W. & Denton, C.S. (1999) The influence of nematodes on below-ground processes in grassland ecosystems. Plant and Soil 212, 2333.CrossRefGoogle Scholar
Bongers, T. & Ferris, H. (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology and Evolution 14, 224228.CrossRefGoogle ScholarPubMed
Cabaret, J., Bouilhol, M. & Mage, C. (2002) Managing helminths of ruminants in organic farming. Veterinary Research 33, 625640.CrossRefGoogle ScholarPubMed
Chartier, C. & Hoste, H. (1997) Response to challenge infection with Haemonchus contortus and Trichostrongylus colubriformis in dairy goats. Differences between high and low-producers. Veterinary Parasitology 73, 267276.CrossRefGoogle ScholarPubMed
Chartier, C. & Pors, I. (2003) Effect of the nematophagous fungus, Duddingtonia flagrans, on the larval development of goat parasitic nematodes: a plot study. Veterinary Research 34, 221230.CrossRefGoogle ScholarPubMed
Chartier, C., Pors, I., Hubert, J., Rocheteau, D., Benoit, C. & Bernard, N. (1998) Prevalence of anthelmintic resistant nematodes in sheep and goats in Western France. Small Ruminant Research 29, 3341.CrossRefGoogle Scholar
Chartier, C., Soubirac, F., Pors, I., Silvestre, A., Hubert, J., Couquet, C. & Cabaret, J. (2001) Prevalence of anthelmintic resistance in gastrointestinal nematodes of dairy goats under extensive management conditions in southwestern France. Journal of Helminthology 75, 325330.CrossRefGoogle ScholarPubMed
Dervin, C. (1988) Comment interpréter les résultats d'une analyse factorielle des correspondances. 75 pp. Paris, Stat-Itcf, Institut Technique des Céréales et des Fourrages.Google Scholar
Dimander, S.O., Höglund, J. & Waller, P.J. (2003) Disintegration of dung pats from cattle treated with the ivermectin anthelmintic bolus, or the biocontrol agent Duddingtonia flagrans. Acta Veterinaria Scandinavica 44, 171180.CrossRefGoogle ScholarPubMed
Faedo, M., Larsen, M., Dimander, S.O., Yeates, G.W., Höglund, J. & Waller, P.J. (2002) Growth of the fungus Duddingtonia flagrans in soil surrounding faeces deposited by cattle or sheep fed the fungus to control nematode parasites. Biological Control 23, 6470.Google Scholar
Fernández, A.S., Henningsen, E., Larsen, M., Nansen, P., Grønvold, J. & Søndergaard, J. (1999a) A new isolate of the nematophagous fungus Duddingtonia flagrans as biological control agent against free-living larvae of horse strongyles. Equine Veterinary Journal 31, 488491.CrossRefGoogle Scholar
Fernández, A.S., Larsen, M., Nansen, P., Grønvold, J., Henriksen, S.A., Bjørn, H. & Wolstrup, J. (1999b) The efficacy of two isolates of the nematode-trapping fungus Duddingtonia flagrans against Dictyocaulus viviparus larvae in faeces. Veterinary Parasitology 85, 289304.Google Scholar
Grønvold, J., Wolstrup, J., Larsen, M., Henriksen, S.A. & Nansen, P. (1993) Biological control of Ostertagia ostertagi by feeding selected nematode-trapping fungi to calves. Journal of Helminthology 67, 3136.CrossRefGoogle ScholarPubMed
Hay, F.S., Niezen, J.H., Leathwick, D.M. & Skipp, R.A. (2002) Nematophagous fungi in pasture: colonisation of sheep dung by nematophagous fungi and their potential for control of free-living stages of gastrointestinal parasites of sheep. Australian Journal of Experimental Agriculture 42, 713.CrossRefGoogle Scholar
Hoste, H., Chartier, C., Etter, E., Goudeau, C., Soubirac, F. & Lefrileux, Y. (2000) A questionnaire survey on the practices adopted to control gastrointestinal nematode parasitism in dairy goat farms in France. Veterinary Research Communications 24, 459469.CrossRefGoogle ScholarPubMed
Knox, M.R., Josh, P.F. & Anderson, L.J. (2002) Deployment of Duddingtonia flagrans in an improved pasture system: dispersal, persistence, and effects on free-living soil nematodes and microarthropods. Biological Control 24, 176182.CrossRefGoogle Scholar
Larsen, M. (2000) Prospects for controlling animal parasitic nematodes by predacious micro fungi. Parasitology 120, S121S131.CrossRefGoogle ScholarPubMed
Lumaret, J.P. (1995) Desiccation rate of excrement: a selective pressure on dung beetles (Coleoptera, Scarabaeoidea). pp. 105118in Roy, J., Aronson, J. & di Castri, F. (Eds) Time scales of biological responses to water constraints. Amsterdam, Academic Publishing.Google Scholar
Martínez-Ortíz-de-Montellano, C., Vargas-Magaña, J.J., Canul-Ku, H.L., Miranda-Soberanis, R., Capetillo-Leal, C., Sandoval-Castro, C.A., Hoste, H. & Torres-Acosta, J.F.J. (2010) Effect of a tropical tannin-rich plant Lysiloma latisiliquum on adult populations of Haemonchus contortus in sheep. Veterinary Parasitology 172, 283290.CrossRefGoogle ScholarPubMed
May, R.M. (1974) General introduction. In Usher, M.B. & Williamson, M.H. (Eds) Ecological stability. London, Chapman & Hall.Google Scholar
Nansen, P., Grønvold, J., Henriksen, S.A. & Wolstrup, J. (1988) Interactions between the predacious fungus Arthrobotrys oligospora and third-stage larvae of a series of animal-parasitic nematodes. Veterinary Parasitology 26, 329337.Google Scholar
Niezen, J.H., Robertson, H.A., Miller, C.M. & Hay, F.S. (2003) The development of Trichostrongylus colubriformis larvae on a range of herbage species or on plots of differing topographical aspect. Veterinary Parasitology 112, 227240.CrossRefGoogle ScholarPubMed
Ojeda-Robertos, N.F., Torres-Acosta, J.F.J., Ayala-Burgos, A., Aguilar-Caballero, A.J., Cob-Galera, L.A. & Mendoza-de-Gives, P. (2008) A technique for the quantification of Duddingtonia flagrans chlamydospores in sheep faeces. Veterinary Parasitology 152, 339343.Google Scholar
Paraud, C. & Chartier, C. (2003) Biological control of infective larvae of a gastro-intestinal nematode (Teladorsagia circumcincta) and a small lungworm (Muellerius capillaris) by Duddingtonia flagrans in goat faeces. Parasitology Research 89, 102106.Google Scholar
Paraud, C., Hoste, H., Lefrileux, Y., Pommaret, A., Paolini, V., Pors, I. & Chartier, C. (2005) Administration of Duddingtonia flagrans chlamydospores to goats to control gastro-intestinal nematodes: dose trials. Veterinary Research 36, 157166.Google Scholar
Pielou, E.C. (1975) Ecological diversity. 165 pp. New York, John Wiley & Sons.Google Scholar
Terrill, T.H., Larsen, M., Samples, O., Husted, S., Miller, J.E., Kaplan, R.M. & Gelaye, S. (2004) Capability of the nematode-trapping fungus Duddingtonia flagrans to reduce infective larvae of gastro-intestinal nematodes in goat faeces in the southeastern United States: dose titration and dose time interval studies. Veterinary Parasitology 120, 285296.CrossRefGoogle Scholar
Waghorn, T.S., Leathwick, D.M., Chen, L.Y. & Skipp, R.A. (2003) Efficacy of the nematode-trapping fungus Duddingtonia flagrans against three species of gastro-intestinal nematodes in laboratory faecal cultures from sheep and goats. Veterinary Parasitology 118, 227234.Google Scholar
Waller, P.J. (2003) Global perspectives on nematode parasite control in ruminant livestock: the need to adopt alternatives to chemotherapy, with emphasis on biological control. Animal Health Research Reviews 4, 3543.CrossRefGoogle ScholarPubMed
Waller, P.J., Schwan, O., Ljungström, B.L., Rydzik, A. & Yeates, G.W. (2004) Evaluation of biological control of sheep parasites using Duddingtonia flagrans under commercial farming conditions on the island of Gotland, Sweden. Veterinary Parasitology 126, 299315.CrossRefGoogle ScholarPubMed
Wright, D.A., McAnulty, R.W., Noonan, M.J. & Stankiewicz, M. (2003) The effect of Duddingtonia flagrans on trichostrongyle infections of Saanen goats on pasture. Veterinary Parasitology 118, 6169.Google Scholar
Yeates, G.W. & King, K.L. (1997) Soil nematodes as indicators of the effect of management on grasslands in the New England Tablelands (NSW): comparison of native and improved grasslands. Pedobiologia 41, 526536.CrossRefGoogle Scholar
Yeates, G.W., Bongers, T., de Goede, R.G.M., Freckman, D.W. & Georgevia, S.S. (1993) Feeding habits in soil nematode families and genera – an outline for soil ecologists. Journal of Nematology 25, 315331.Google ScholarPubMed
Yeates, G.W., Waller, P.J. & King, K.L. (1997) Soil nematodes as indicators of the effect of management on grasslands in the New England Tablelands (NSW): effect of measures for control of parasites of sheep. Pedobiologia 41, 537548.CrossRefGoogle Scholar
Yeates, G.W., Dimander, S.O., Waller, P.J. & Höglund, J. (2002) Environmental impact on soil nematodes following the use of the ivermectin sustained-release bolus or the nematophagous fungus Duddingtonia flagrans to control nematode parasites of cattle in Sweden. Acta Agriculturae Scandinavica, Section A-Animal Science 52, 233242.Google Scholar
Yeates, G.W., Dimander, S.O., Waller, P.J. & Höglund, J. (2003) Soil nematode populations beneath faecal pats from grazing cattle treated with the ivermectin sustained-release bolus or fed the nematophagous fungus Duddingtonia flagrans to control nematode parasites. Acta Agriculturae Scandinavica, Section A-Animal Science 53, 197206.Google Scholar
Yeates, G.W., Skipp, R.A., Chen, L.Y., Waghorn, T.S. & Potter, J.F. (2007) Temporal and spatial aspects of the influence on soil nematodes of depositing artificial pats of sheep faeces containing a range of parasite management agents. Applied Soil Ecology 37, 106117.CrossRefGoogle Scholar