Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-25T21:40:43.864Z Has data issue: false hasContentIssue false

Identification of a variant growth hormone haplotype in mice selected for high body weight

Published online by Cambridge University Press:  14 April 2009

R. Keith Salmon*
Affiliation:
Department of Animal ScienceUniversity of Alberta, Edmonton, Alberta, Canada T6G 2P5
Roy T. Berg
Affiliation:
Department of Animal ScienceUniversity of Alberta, Edmonton, Alberta, Canada T6G 2P5
Francis C. Yeh
Affiliation:
Department of Forest ScienceUniversity of Alberta, Edmonton, Alberta, Canada T6G 2P5
Ross B. Hodgetts
Affiliation:
Department of Genetics, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
*
* Corresponding author.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Restriction site analysis revealed a variant growth hormone gene haplotype fixed within growth-selected mice (High line-3; HL-3) exhibiting growth rates 1·5 times greater than those of unselected Foundation population (FP-3) mice. Relative to the FP-3 haplotype, the HL-3 haplotype exhibited restriction fragment length polymorphisms for each of seven different restriction enzymes. Three of the polymorphic sites lie within 1·1 kb of the 5′ end of the structural gene; a fourth polymorphism exists within the structural gene. The HL-3 haplotype was also fixed within an additional three growth-selected lines (including a replicate of HL-3). This identification of an association, between the natural variant of a growth regulating gene and a growth-related phenotype, is the prototype of experiments that could lead to the isolation of variant genes which enhance livestock production characters.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Barta, A., Richards, R. I., Baxter, J. D. & Shine, J. (1981). Primary structure and evolution of rat growth hormone gene. Proceedings of the National Academy of Sciences U.S.A. 78, 48674871.CrossRefGoogle ScholarPubMed
Bowman, J. C. & Falconer, D. S. (1960). Inbreeding depression and heterosis of litter size in mice. Genetical Research 1, 262274.CrossRefGoogle Scholar
Casanova, J., Copp, R. P., Janocko, L. & Samuels, H. H. (1985). 5′-flanking DNA of the rat growth hormone gene mediates regulated expression by thyroid hormone. Journal of Biological Chemistry 260, 1174411748.CrossRefGoogle Scholar
Darnell, J. E. (1982). Variety in the level of gene control in eucaryotic cells. Nature 297, 365371.CrossRefGoogle Scholar
DeNoto, F. M., Moore, D. D. & Goodman, H. M. (1981). Human growth hormone DNA sequence and mRNA structure: possible alternative splicing. Nucleic Acids Research 9, 37193730.CrossRefGoogle ScholarPubMed
Estelle, M. A. & Hodgetts, R. B. (1984). Insertion polymorphisms may cause stage specific variation in mRNA levels for dopa decarboxylase in drosophila. Molecular and General Genetics 195, 442–51.CrossRefGoogle Scholar
Falconer, D. S. (1960). Selection of mice for growth on high and low planes of nutrition. Genetical Research 1, 91113.CrossRefGoogle Scholar
Falconer, D. S. (1973). Replicated selection for body weight in mice. Genetical Research 22, 291321.CrossRefGoogle ScholarPubMed
Farid-Naeini, A. (1986). Inbreeding and litter size in mice. Ph.D. thesis, University of Alberta.Google Scholar
Hammer, R. E., Palmiter, R. D. & Brinster, R. L. (1984). Partial correction of murine hereditary growth disorder by germ-line incorporation of a new gene. Nature 311, 6567.CrossRefGoogle ScholarPubMed
Hammer, R. E., Pursel, V. G., Rexroad, C. E., Wall, R. J., Bolt, D. J., Ebert, K. M., Palmiter, R. D. & Brinster, R. L. (1985). Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315, 680683.CrossRefGoogle ScholarPubMed
Jackson Memorial Laboratory (1955). Descriptions of strains maintained in the ‘inbred nucleus’ and ‘market colonies’. Jackson Memorial Laboratory, Bar Harbor, Maine. Mimeograph, p. 5.Google Scholar
Lewis, U. J. (1984). Variants of growth hormone and prolactin and their posttranslational modifications. Annual Review of Physiology 46, 3342.CrossRefGoogle ScholarPubMed
Linzer, D. I. H. & Talamantes, F. (1985). Nucleotide sequence of mouse prolactin and growth hormone mRNAs and expression of these mRNAs during pregnancy. Journal of Biological Chemistry 260, 95749579.CrossRefGoogle ScholarPubMed
Muskavitch, M. A. T. & Hogness, D. S. (1982). An expandable gene that encodes a Drosophila glue protein is not expressed in variants lacking remote upstream sequences. Cell 29, 10411051.CrossRefGoogle Scholar
Neimann-Sorensen, A. & Robertson, A. (1961). The association between blood groups and several production characteristics in three Danish cattle breeds. Acta Agricultural Scandinavica 11, 163196.CrossRefGoogle Scholar
Norstedt, G. & Palmiter, R. D. (1984). Secretory rhythm of growth hormone regulates sexual differentiation of mouse liver. Cell 36, 805812.CrossRefGoogle ScholarPubMed
Palmiter, R. D., Brinster, R. L., Hammer, R. E., Trumbauer, M. E., Rosenfeld, M. G., Birnberg, N. C. & Evans, R. M. (1982). Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300, 611615.CrossRefGoogle ScholarPubMed
Palmiter, R. D., Norstedt, G., Gelinas, R. E., Hammer, R. E. & Brinster, R. L. (1983). Metallothionein-human GH fusion genes stimulate growth of mice. Science 222, 809814.CrossRefGoogle ScholarPubMed
Parks, J. S., Herd, J. E., Wurzel, J. M. & Martial, J. A. (1982). Structural analysis of rodent growth hormone genes; application to genetic forms of hypopituitarism. Endocrinology 110, 16721675.CrossRefGoogle ScholarPubMed
Phillips, J. A., Beamer, W. G. & Bartke, A. (1982). Analysis of growth hormone genes in mice with genetic defects of growth hormone gene expression. Journal of Endocrinology 92, 405407.CrossRefGoogle Scholar
Pidduck, H. G. & Falconer, D. S. (1978). Growth hormone function in strains of mice selected for large and small size. Genetical Research 32, 195206.CrossRefGoogle ScholarPubMed
Rottman, F., Camper, S., Goodwin, E., Hampson, R., Lyons, R., Sakai, D., Woychik, R. & Yao, Y. (1986). Structure and regulated expression of bovine prolactin and bovine growth hormone genes. In Molecular and Cellular Aspects of Reproduction (ed. Dhindsa, D. S. and Bahl, O. P.), pp. 281299. New York: Plenum Press.CrossRefGoogle Scholar
Rotwein, P. S., Chirgwin, J., Province, M., Knowler, W. C., Pettitt, D. J., Cordell, B., Goodman, H. M. & Permutt, M. A. (1983). Polymorphism in the 5′ flanking region of the human insulin gene: a genetic marker of non-insulin dependent diabetes. New England Journal of Medicine 308, 6571.CrossRefGoogle ScholarPubMed
Schuler, L. A. & First, N. L. (1985). Regulation of Growth and Lactation in Animals, 1st edn.University of Wisconsin, Madison.Google Scholar
Seeburg, P. H., Shine, J., Martial, J. A., Baxter, J. D. & Goodman, H. M. (1977). Nucleotide sequence and amplification in bacteria of structural gene for rat growth hormone. Nature 270, 486494.CrossRefGoogle ScholarPubMed
Sinha, Y. N., Selby, F. W. & Vanderlaan, W. P. (1974). The natural history of prolactin and GH secretion in mice with high and low incidence of mammary tumors. Endocrinology 94, 757764.CrossRefGoogle ScholarPubMed
Smith, C. (1967). Improvement of metric traits through specific genetic loci. Animal Production 9, 349358.Google Scholar
Stansfield, W. D., Bradford, G. E., Stormant, C. & Black-well, R. L. (1964). Blood groups and their associations with production and reproduction in sheep. Genetics 50, 13571367.CrossRefGoogle ScholarPubMed
Yanai, R. & Nagasawa, H. (1968). Age, strain and sex differences in the anterior growth hormone content of mice. Endocrinology Japonica 15, 395402.CrossRefGoogle ScholarPubMed