Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T05:15:42.648Z Has data issue: false hasContentIssue false

Geographic distribution and seasonal variation of mitochondrial DNA haplotypes in the aphid Rhopalosiphum padi (Hemiptera: Aphididae)

Published online by Cambridge University Press:  10 July 2009

D. Martinez-Torres
Affiliation:
Departament de Genètica, Facultat de Ciènces Biologiques, Universitat de València, Dr Moliner 50, 46100 Burjassot, València, Spain: Laboratoire de Zoologie, INRA, B.P. 29, 35650 Le Rheu, France
A. Moya
Affiliation:
Departament de Genètica, Facultat de Ciènces Biologiques, Universitat de València, Dr Moliner 50, 46100 Burjassot, València, Spain:
P.D.N. Hebert
Affiliation:
Department of Zoology, University of Guelph, Guelph, Canada, N1G 2W1:
J.-C. Simon*
Affiliation:
Laboratoire de Zoologie, INRA, B.P. 29, 35650 Le Rheu, France
*
* Author for correspondence.

Abstract

This study examines the spatial and seasonal patterning of mitochondrial DNA diversity in French populations of the bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus), on both its primary and secondary hosts. Our results confirm the presence of two major mitochondrial lineages that are generally associated with the breeding system variation (cyclic and obligate parthenogenesis) shown by this species. The strength of this relationship varies regionally, being most evident in the south and west. Cyclically parthenogenetic populations show no significant regional or seasonal genetic divergence reflecting high levels of gene flow, possibly promoted by their obligate host-alternation. However, obligately parthenogenetic populations show a north-south cline in the distribution of the dominant haplotypes. This pattern might result from a selective advantage of some obligately parthenogenetic lineages under cold temperature regime. Alternatively, this cline might be established by a gradient in the intensity of nuclear gene flow between cyclically and obligately parthenogenetic populations mediated by androcyclic males. The discrimination between these possible explanations will require extending analysis to include hypervariable nuclear markers.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arlery, R. (1979) Le climat de la France. Ministère des Transports, Direction de la Météorologie. 131 pp.Google Scholar
Blackman, R.L. (1971) Variation in the photoperiodic response within natural populations of Myzus persicae Sulz. Bulletin of Entomological Research 60, 533546.CrossRefGoogle ScholarPubMed
Blackman, R.L. (1972) The inheritance of life-cycle differences in Myzus persicae (Sulz.) (Hem., Aphididae). Bulletin of Entomological Research 62, 281294.CrossRefGoogle Scholar
Carter, N., McLean, I.F.G., Watt, A.D. & Dixon, A.F.G. (1980) Cereal aphids: a case study and review. Applied Biology 5, 271348.Google Scholar
Dedryver, C.A. & Gellé, A. (1982) Biologie des pucerons des céréales dans l'ouest de la France. IV - Etude de l'hivernation des populations anholocycliques de Rhopalosiphum padi L., Metopolophium dirhodum Wlk et Sitobion avenae F. sur repousses de céréales dans trois stations de Bretagne et du Bassin parisien. Acta Oecologia Applicata 3, 321342.Google Scholar
Dixon, A.F.G. & Glen, D.M. (1971) Morph determination in the bird cherry-oat aphid, Rhopalosiphum padi L. Annals of Applied Biology 68, 1121.CrossRefGoogle Scholar
Excoffier, L., Smouse, P.E. & Quattro, J.M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479491.CrossRefGoogle ScholarPubMed
Gillet, H., Dedryver, C.A., Robert, Y., Gamon, A. & Pierre, J.S. (1990) Assessing the risk of primary infection of cereals by barley yellow dwarf virus in autumn in the Rennes basin of France. Annals of Applied Biology 117, 237251.CrossRefGoogle Scholar
Griffiths, E. & Wratten, S.D. (1979) Intra- and inter-specific differences in cereal aphid low-temperature tolerance. Entomologia Experimentalis et Applicata 26, 161167.CrossRefGoogle Scholar
Lees, A.D. (1966) The control of polymorphism in aphids. Advances in Insect Physiology 3, 207277.CrossRefGoogle Scholar
Lowles, A. (1995) A quick method for distinguishing between the two autumn winged female morphs of the aphid Rhopalosiphum padi. Entomologia Experimentalis et Applicata 74, 9599.CrossRefGoogle Scholar
Loxdale, H.D. & Brookes, C.P. (1988) Electrophoretic study of enzymes from cereal aphid populations. V. Spatial and temporal similarity between holocyclic populations of the bird cherry-oat aphid Rhopalosiphum padi (L.) (Hemiptera: Aphididae) in Britain. Bulletin of Entomological Research 78, 241249.CrossRefGoogle Scholar
Martinez, D.A., Moya, A., Latorre, A. & Fereres, A. (1992) Mitochondrial DNA variation in Rhopalosiphum padi (Homoptera: Aphididae) populations from four Spanish localities. Annals of the Entomological Society of America 85, 241246.CrossRefGoogle Scholar
Martinez-Torres, D.A., Simon, J.C., Fereres, A. & Moya, A. (1996) Genetic variation in natural populations of the aphid Rhopalosiphum padi as revealed by maternally inherited markers. Molecular Ecology 5, 659670.CrossRefGoogle Scholar
Maynard Smith, J. (1971) What use is sex? Journal of Theoretical Biology 30, 319335.CrossRefGoogle Scholar
Moran, N.A. (1992) The evolution of aphid life cycles. Annual Review of Entomology 37, 321348.CrossRefGoogle Scholar
Plumb, R.T. (1983) Barley yellow dwarf virus - a global problem. pp. 185194in: Plumb, R.T. & Thresh, J.M. (Eds) Plant virus epidemiology. Blackwell Scientific Publications.Google Scholar
Rispe, C., Pierre, J.S., Simon, J.C. & Gouyon, P.H. (1996) Why do aphids have sex when it cools down? Journal of Evolutionary Biology, submitted.Google Scholar
Simon, J.C. & Hebert, P.D.N. (1995) Patterns of genetic variation among Canadian populations of the bird cherry-oat aphid, Rhopalosiphum padi L. (Homoptera: Aphididae). Heredity 74, 346353.CrossRefGoogle Scholar
Simon, J.C., Blackman, R.L. & Le Gallic, J.F. (1991a) Local variability in the life-cycle of the bird cherry-oat aphid, Rhopalosiphum padi (Homoptera: Aphididae) in western France. Bulletin of Entomological Research 81, 315322.CrossRefGoogle Scholar
Simon, J.C., Dedryver, C.A. & Pierre, J.S. (1991b) Identifying bird cherry-oat aphid Rhopalosiphum padi emigrants, alate exules and gynoparae: application of multivariate methods to morphometric and anatomical features. Entomologia Experimentalis et Applicata 59, 267277.CrossRefGoogle Scholar
Simon, J.C., Le Gallic, J.F., Bonhomme, J. & Dedryver, C.A. (1994) Breeding system complex in the cereal aphid Rhopalosiphum padi (Homoptera: Aphididae) and its influences on population biology and dynamics. Bulletin OILB/SROP 17, 1115.Google Scholar
Simon, J.C., Carrel, E., Hebert, P.D.N., Dedryver, C.A., Bonhomme, J. & Le Gallic, J.F. (1996a) Genetic diversity and mode of reproduction in French populations of the aphid Rhopalosiphum padi. Heredity 76, 305313.CrossRefGoogle Scholar
Simon, J.C., Martinez-Torres, D.A., Latorre, A., Moya, A. & Hebert, P.D.N. (1996b) Molecular characterization of cyclic and obligate parthenogens in the aphid Rhopalosiphum padi (L.). Proceedings of the Royal Society of London Series B 263, 481486.Google ScholarPubMed
Tatchell, G.M. & Parker, S.J. (1990) Host plant selection by migrant Rhopalosiphum padi in autumn and the occurrence of an intermediate morph. Entomologia Experimentalis et Applicata 54, 237244.CrossRefGoogle Scholar
Tatchell, G.M., Plumb, R.T. & Carter, N. (1988) Migration of alate morphs of the bird cherry aphid (Rhopalosiphum padi) and implications for the epidemiology of barley yellow dwarf virus. Annals of Applied Biology 112, 111.CrossRefGoogle Scholar