Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-31T06:07:01.326Z Has data issue: false hasContentIssue false

INVARIANCE OF THE COEFFICIENTS OF STRONGLY CONVEX FUNCTIONS

Published online by Cambridge University Press:  23 November 2016

D. K. THOMAS*
Affiliation:
Department of Mathematics, Swansea University, Singleton Park, SwanseaSA2 8PP, UK email d.k.thomas@swansea.ac.uk
SARIKA VERMA
Affiliation:
Department of Mathematics, DAV University, Jalandhar, Punjab 144012, India email sarika.16984@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let the function $f$ be analytic in $\mathbb{D}=\{z:|z|<1\}$ and given by $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$. For $0<\unicode[STIX]{x1D6FD}\leq 1$, denote by ${\mathcal{C}}(\unicode[STIX]{x1D6FD})$ the class of strongly convex functions. We give sharp bounds for the initial coefficients of the inverse function of $f\in {\mathcal{C}}(\unicode[STIX]{x1D6FD})$, showing that these estimates are the same as those for functions in ${\mathcal{C}}(\unicode[STIX]{x1D6FD})$, thus extending a classical result for convex functions. We also give invariance results for the second Hankel determinant $H_{2}=|a_{2}a_{4}-a_{3}^{2}|$, the first three coefficients of $\log (f(z)/z)$ and Fekete–Szegö theorems.

Type
Research Article
Copyright
© 2016 Australian Mathematical Publishing Association Inc. 

References

Ali, R. M., ‘Coefficients of the inverse of strongly starlike functions’, Bull. Malays. Math. Sci. Soc. (2) 26 (2003), 6371.Google Scholar
Ali, R. M. and Singh, V. A., ‘On the fourth and fifth coefficients of strongly starlike functions’, Results Math. 29 (1996), 197202.CrossRefGoogle Scholar
Brannan, D. A., Clunie, J. and Kirwan, W. E., ‘Coefficient estimates for a class of starlike functions’, Canad. J. Math. XXII(3) (1970), 476485.CrossRefGoogle Scholar
Hayman, W. K., ‘On the second Hankel determinant of mean univalent functions’, Proc. Lond. Math. Soc. (3) 3(18) (1968), 7794.CrossRefGoogle Scholar
Janteng, A., Halim, S. and Darus, M., ‘Hankel determinants for starlike and convex functions’, Int. J. Math. Anal. 1(13) (2007), 619625.Google Scholar
Libera, R. J. and Zlotkiewicz, E. J., ‘Coefficient bounds for the inverse of a function with derivative in O’, Proc. Amer. Math. Soc. 87(2) (1983), 251257.Google Scholar
Löwner, C., ‘Untersuchungen uber schlichte konforme Abbildungen des Einheitskreises I’, Math. Ann. 89 (1923), 103121.CrossRefGoogle Scholar
Noonan, J. W. and Thomas, D. K., ‘On the second Hankel determinant of areally mean p-valent functions’, Trans. Amer. Math. Soc. 223(2) (1976), 337346.Google Scholar
Pommerenke, Ch., ‘On the Hankel determinants of univalent functions’, Mathematika 16(13) (1967), 108112.CrossRefGoogle Scholar