Hostname: page-component-76dd75c94c-8c549 Total loading time: 0 Render date: 2024-04-30T09:01:15.803Z Has data issue: false hasContentIssue false

MODELLING CROWDING EFFECTS IN INFECTIOUS DISEASE TRANSMISSION

Published online by Cambridge University Press:  04 August 2015

EDWARD K. WATERS*
Affiliation:
The University of Notre Dame Australia, School of Medicine, PO 160 Oxford St, Darlinghurst, NSW 2010, Australia email edward.waters.nsw@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD Theses
Copyright
© 2015 Australian Mathematical Publishing Association Inc. 

References

Kuno, E., ‘Aggregation pattern of individuals and the outcomes of competition within and between species: differential equation models’, Res. Popul. Ecol. 30(1) (1988), 6982.CrossRefGoogle Scholar
Lloyd, M., ‘Mean crowding’, J. Anim. Ecol. (1967), 130.CrossRefGoogle Scholar
Waters, E. K., ‘Aggregation and competitive exclusion: explaining the coexistence of human papillomavirus types and the effectiveness of limited vaccine conferred cross-immunity’, Acta Biotheor. 60(4) (2012), 333356.CrossRefGoogle ScholarPubMed
Waters, E. K., Sidhu, H. S. and Mercer, G. N., ‘Spatial heterogeneity in simple deterministic SIR models assessed ecologically’, ANZIAM J. 54(1–2) (2012), 2336.CrossRefGoogle Scholar
Waters, E. K., Sidhu, H. S., Sidhu, L. A. and Mercer, G. N., ‘Extended Lotka–Volterra equations incorporating population heterogeneity: derivation and analysis of the predator–prey case’, Ecol. Model. 297 (2015), 187195.CrossRefGoogle Scholar