Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-21T09:01:32.527Z Has data issue: false hasContentIssue false

The effects of leading-edge tubercles on dynamic stall

Published online by Cambridge University Press:  20 April 2020

John T. Hrynuk*
Affiliation:
Vehicle Technology Directorate, CCDC-Army Research Lab, Aberdeen Proving Ground, MD 21005, USA
Douglas G. Bohl
Affiliation:
Department of Mechanical and Aeronautical Engineering, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
*
Email address for correspondence: john.t.hrynuk.civ@mail.mil

Abstract

The effects of leading-edge tubercles, based on the flippers of humpback whales, on the flow field around an airfoil undergoing large-amplitude dynamic changes in the angle of attack have been studied experimentally. Airfoils were pitched from an initial angle of attack of $0^{\circ }$ to $50^{\circ }$ at constant pitch rates with a chord Reynolds number of 12 000. Velocity and vorticity fields around a standard NACA 0012 airfoil and NACA 0012 modified with leading-edge tubercles were quantified using molecular tagging velocimetry. Vortex dynamics were characterized by tracking the location, core radius and circulation. The resulting velocity fields showed that the dynamics of the formation and separation of the leading-edge vortex were fundamentally different between the straight leading-edge airfoil and the tubercled airfoil. The tubercled airfoil also showed spanwise variation in dynamics of the dynamic stall vortex (DSV) formation. The characteristics of the DSV, specifically the circulation and proximity of the DSV to the airfoil suction surface, are known to have an impact on lift during dynamic pitching. The results showed that the DSV was stronger and remained closer to the airfoil longer for the modified airfoil. The baseline DSV convected away from the airfoil faster than the DSV on the tubercled airfoil once it began to separate from the airfoil. Shear-layer vortices, which form during dynamic stall near the mid-cord region, appeared to affect the convective behaviour of the DSV. The results suggest that the leading-edge tubercles observed on Humpback whale flippers act as passive flow-control mechanisms to control or delay dynamic stall.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bohl, D. G. & Koochesfahani, M. M. 2009 MTV measurements of the vortical field in the wake of an airfoil oscillating at high reduced frequency. J. Fluid Mech. 620, 6388.CrossRefGoogle Scholar
Borg, J.2012 The effect of leading edge serrations on dynamic stall. Masters thesis, University of Southampton, Faculty of Engineering and the Environment.Google Scholar
Brandon, J. M.1991 Dynamic stall effects and applications to high performance aircraft. NASA Langley Tech. Rep. 10.5555/887303.Google Scholar
Cai, C., Liu, S., Zuo, Z., Maeda, T., Kamada, Y., Li, Q. & Sato, R. 2019 Experimental and theoretical investigations on the effect of a single leading-edge protuberance on airfoil performance. Phys. Fluids 31, 027103.Google Scholar
Cai, C., Zuo, Z., Maeda, T., Kamada, Y., Li, Q., Shimamoto, K. & Liu, S. 2017 Periodic and aperiodic flow patterns around an airfoil with leading-edge protuberances. Phys. Fluids 29, 115110.CrossRefGoogle Scholar
Carr, L. W., McAlister, K. W. & McCroskey, W. J.1977 Analysis of the development of dynamic stall based on oscillating airfoil experiments. NASA-TN-D-8382, A-6674.Google Scholar
Chen, J. H., Li, S. S. & Nguyen, V. T. 2012 The effect of leading edge protuberances on the performance of small aspect ratio foils. In 15th International Symposium on Flow Visualization, June 25–28. Belarus National Academy of Sciences, Luikov Heat & Mass Transfer Institute, Minsk, Belarus.Google Scholar
Choudhuri, P. G., Knight, D. D. & Visbal, M. R. 1994 Two-dimensional unsteady leading-edge separation on a pitching airfoil. AIAA J. 32 (4), 673681.CrossRefGoogle Scholar
Cohn, R. K. & Koochesfahani, M. M. 2000 The accuracy of remapping irregularly spaced velocity data onto a regular grid and the computation of vorticity. Exp. Fluids 29, Supplemental, S61S69.CrossRefGoogle Scholar
Corsini, A., Delibra, G. & Sheard, A. G. 2013 On the role of leading-edge bumps in the control of stall onset in axial fan blades. Trans. ASME J. Fluids Engng 135, 081104.CrossRefGoogle Scholar
Coton, F. N., Galbraith, R. A. M. & Green, R. B. 2001 The effect of wing planform shape on dynamic stall. Aeronaut. J. 105 (1045), 151159.CrossRefGoogle Scholar
Custodio, D.2008 The effect of humpback whale-like leading edge protuberances on hydrofoil performance. PhD Dissertation, WPI.Google Scholar
Dickinson, M. H., Lehmann, F.-O. & Sane, S. P. 1999 Wing rotation and the aerodynamic basis of insect flight. Science 284, 19541960.CrossRefGoogle ScholarPubMed
Ekaterinaris, J. A. 2002 Numerical investigations of dynamic stall active control for incompressible and compressible flows. J. Aircraft 39 (1), 7178.CrossRefGoogle Scholar
Ellington, C. P., Berg, C. van den, Willmott, A. P. & Thomas, A. L. R. 1996 Leading-edge vortices in insect flight. Nature 384, 626630.CrossRefGoogle Scholar
Favier, J., Pinelli, A. & Piomelli, U. 2012 Control of the separated flow around an airfoil using wavy leading edge inspired by humpback whale flippers. C. R. Méc. 340, 107114.CrossRefGoogle Scholar
Fish, F. E. & Battle, J. M. 1995 Hydrodynamic design of the Humpback Whale flipper. J. Morphol. 225, 5160.CrossRefGoogle ScholarPubMed
Gao, H., Wei, M. & Hrynuk, J. T.2018 Data-driven ROM for the prediction of dynamic stall. In AIAA Aviation Forum, doi:10.2514/6.2018-3094.CrossRefGoogle Scholar
Gendrich, C. P.1999 Dynamic stall of rapidly pitching airfoils: MTV experiments and Navier–Stokes simulations. PhD thesis, Michigan State University.Google Scholar
Gendrich, C. P., Bohl, D. G. & Koochesfahani, M. M. 1997 Whole-field measurements of unsteady separation in a vortex ring/wall interaction. In 28th AIAA Fluid Dynamics Conference, 4th AIAA Shear Flow Control Conference, p. 1780.Google Scholar
Gendrich, C. P. & Koochesfahani, M. M. 1996 A spatial correlation technique for estimating velocity fields using molecular tagging velocimetry. Exp. Fluids 22, 6777.CrossRefGoogle Scholar
Graham, G. M.1985 An experimental investigation of an airfoil pitching at moderate to high rates to large angles of attack. PhD Dissertation, Texas Tech University.CrossRefGoogle Scholar
Hansen, K. L., Kelso, R. M. & Dally, B. B. 2011 Performance variations of leading-edge tubercles for distinct airfoil profiles. AIAA J. 49 (1), 185194.CrossRefGoogle Scholar
Hansen, K. L., Rostamzadeh, N., Kelso, R. M. & Dally, B. B. 2016 Evolution of the streamwise vortices generated between leading edge tubercles. J. Fluid Mech. 788, 730766.CrossRefGoogle Scholar
Johari, H., Henoch, C., Custodio, D. & Levshin, A. 2007 Effects of leading-edge protuberances on airfoil performance. AIAA J. 45 (11), 26342642.CrossRefGoogle Scholar
Mai, H., Geissler, G., Kitcher, K., Bosbach, J., Richard, H. & de Groot, K. 2008 Dynamic stall control by leading edge vortex generators. J. Am. Helicopter Soc. 53 (1), 2636.CrossRefGoogle Scholar
McAlister, K. W., Carr, L. W. & McCroskey, W. J.1978 Dynamic stall experiments on the NACA 0012 airfoil.Google Scholar
McCroskey, W. J. 1982 ‘Unsteady airfoils’. Annu. Rev. Fluid Mech. 14, 285311.CrossRefGoogle Scholar
Melipeddi, A. K., Mahmoudnejad, N. & Hoffmann, K. A. 2011 Numerical analysis of effects of leading-edge protuberances on aircraft wing performance. J. Aircraft 49 (5), 13361344.CrossRefGoogle Scholar
Michard, M., Graftieaux, L., Lollini, L. & Grosjean, N. 1997 Identification of vortical structures by a non local criterion – application to PIV measurements and DNS-LES results of turbulent rotating flows. In Proceedings of the 11th Conference on Turbulent Shear Flows. Institut National Polytechnique de Grenoble.Google Scholar
Miklosovic, D. S., Murray, M. M. & Howle, L. E. 2007 Experimental evaluation of sinusoidal leading edges. J. Aircraft 44 (4), 14041407.CrossRefGoogle Scholar
Miklosovic, D. S., Murray, M. M., Howle, L. E. & Fish, F. E. 2004 Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers. Phys. Fluids 16 (5), 3942.CrossRefGoogle Scholar
van Nierop, E. A., Alben, S. & Brenner, M. P. 2008 How bumps on whale flippers delay stall: an aerodynamic model. Am. Phys. Soc. 100, 054502.Google Scholar
Oshima, H. & Ramaprian, B. R. 1997 Velocity measurements over a pitching airfoil. AIAA J. 35 (1), 119126.CrossRefGoogle Scholar
Pedro, H. T. C. & Kobayashi, M. H. 2008 Numerical study of stall delay on humpback whale flippers. In 46th AIAA Aerospace Sciences Meeting and Exhibit.Google Scholar
Perez-Torro, R. & Kim, J. W. 2017 A large-eddy simulation on a deep-stalled aerofoil with a wavy leading edge. J. Fluid Mech. 813, 2352.CrossRefGoogle Scholar
Pruski, B. J. & Bowersox, R. D. W. 2013 Leading-edge flow structure of a dynamically pitching NACA 0012 airfoil. AIAA J. 2013 (51), 10421053.CrossRefGoogle Scholar
Rostamzadeh, N., Hansen, K. L., Kelso, R. M. & Dally, B. B. 2014 The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil’s performance with undulating leading edge modification. Phys. Fluids 26, 107101.CrossRefGoogle Scholar
Schreck, I. & Helin, H. F. 1994 Unsteady vortex dynamics and surface pressure topologies on a finite wing. J. Aircraft 31 (4), 163186.Google Scholar
Segre, P. S., Mududzi, S., Meyer, M. A. & Findlay, K. P. 2017 A hydrodynamically active flipper-stroke in humpback whales. Current Biol. 27 (13), R636R637.CrossRefGoogle ScholarPubMed
Shih, C., Lourenco, L. M. & Krothapalli, A. 1995 Investigation of flow at leading and trailing edges of pitching-up airfoil. AIAA J. 33 (8), 13691376.CrossRefGoogle Scholar
Skillen, A., Revell, A., Favier, J., Pinelli, A. & Piomelli, U. 2013 Investigation of wing stall delay effect due to an undulating leading edge: an les study. In International Symposium on Turbulence and Shear Flow.Google Scholar
Stanway, M. J.2006 Hydrodynamic effects of leading-edge tubercles on control surfaces and in flapping foil propulsion. Massachusetts Institute of Technology. Dept. of Mechanical Engineering. http://hdl.handle.net/1721.1/42917.Google Scholar
Visbal, M. R. 1991 On the formation and control of the dynamic stall vortex on a pitching airfoil. In 29th AIAA Aerospace Sciences Meeting.Google Scholar
Visbal, M. R. & Garmann, D. J. 2017 Analysis of dynamic stall on a pitching airfoil using high-fidelity Large-Eddy simulations. AIAA J. 56 (1), 4663.CrossRefGoogle Scholar
Visbal, M. R. & Garmann, D. J. 2019 Dynamic stall of a finite-aspect-ratio wing. AIAA J. 57 (3), 962977.CrossRefGoogle Scholar
Watts, P. & Fish, F. E.2001 The influence of passive leading edge tubercles on wing performance. In Proceedings of the 12th International Symposium on Unmanned Untethered Submersible Tech. Durham, NH: Autonomous Undersea Systems Institute.Google Scholar
Weber, P. W., Howle, L. E., Murray, M. M. & Miklosovic, D. S. 2011 Computational evaluation of the performance of lifting surfaces with leading-edge protuberances. J. Aircraft 48 (2), 591600.CrossRefGoogle Scholar
Yoon, H. S., Hung, P. A., Jung, J. H. & Kim, M. C. 2011 Effect of the wavy leading edge on hydrodynamic characteristics for flow around low aspect ratio wing. Comput. Fluids 49, 276289.CrossRefGoogle Scholar