Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T10:02:59.425Z Has data issue: false hasContentIssue false

Surface slopes, velocity profiles and fluid pressure in coarse-grained debris flows saturated with water and mud

Published online by Cambridge University Press:  17 February 2014

R. Kaitna*
Affiliation:
Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
W. E. Dietrich
Affiliation:
Department of Earth and Planetary Sciences, University of California at Berkeley, CA 94720-4767, USA
L. Hsu
Affiliation:
Lamond-Doherty Earth Observatory, Columbia University, NY 10964, USA
*
Email address for correspondence: roland.kaitna@boku.ac.at

Abstract

Data on the internal velocity distribution of flowing sediment–fluid mixtures such as debris flows are rare, but necessary for model development and testing. A probe to measure the mean particle velocity at different depths and different locations within experimental debris flows in a 4 m diameter rotating drum was developed. In addition, the flow depth, basal normal stress and basal pore fluid pressure were also measured. Results show that for a given sediment–fluid mixture the velocity profiles collapse to distinct non-dimensional profiles. Macroscopic flow behaviour shows great similarity, with mean surface slopes weakly dependent on the shear rate for water-saturated gravel, but strongly shear-rate-dependent when pores are filled with mud. Poorly sorted material with a high content of fines produced fluid pressures close to normal stress and sidewall friction had a strong effect on the flow pattern. Our results reveal variability in profile characteristics for flows displaying similar macro-dynamics and provide data for model testing.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, H., Brennen, C. E. & Sabersky, R. H. 1991 Measurements of velocity, velocity fluctuation, density, and stresses in chute flows of granular materials. Trans. ASME: J. Appl. Mech. E 58, 792803.CrossRefGoogle Scholar
Ancey, C. 2006 Plasticity and geophysical flows: a review. J. Non-Newtonian Fluid Mech. 142, 435.Google Scholar
Arai, M. & Takahashi, T. 1983 A method for measuring velocity profiles in mud flows. In Proceedings of 20th IAHR Congress, IAHR, Moscow, 3 pp. 279286.Google Scholar
Arai, M., Huebl, J & Kaitna, R. 2013 Occurrence conditions of roll waves for three grain-fluid models and comparison with results from experiments and field observation. Geophys. J. Intl 195 (3), 14641480.Google Scholar
Armanini, A., Capart, H., Fraccorollo, L. & Larcher, M. 2005 Rheological stratification in experimental free-surface flows of granular–liquid mixtures. J. Fluid Mech. 532, 269319.CrossRefGoogle Scholar
Bagnold, R. A. 1954 Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. 225, 4963.Google Scholar
Bartelt, B., Buser, O. & Platzer, K. 2006 Fluctuation-dissipation relations for granular snow avlanches. J. Glaciol. 52 (179), 631643.Google Scholar
Bartelt, B., Buser, O. & Platzer, K. 2007 Starving avalanches: frictional mechanism at the tails of finite-sized mass movements. J. Glaciol. 51 (172), 125138.Google Scholar
Berti, M., Genevois, R., Simoni, A. & Tecca, P. R. 1999 Field observations of a debris flow event in the Dolomites. Geomorphology 29, 265274.Google Scholar
Berzi, D. & Jenkins, J. T. 2008 A theoretical analysis of free-surface flows of saturated granular–liquid mixtures. J. Fluid Mech. 608, 393410.Google Scholar
Boateng, A. A. & Barr, P. V. 1997 Granular flow behaviour in the transverse plane of partially filled rotating cylinder. J. Fluid Mech. 330, 233249.Google Scholar
Boyer, F., Guazzelli, E. & Pouliquen, O. 2011 Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301.CrossRefGoogle ScholarPubMed
Cassar, C., Nicolas, M. & Pouliquen, O. 2005 Submarine granular flows down inclined planes. Phys. Fluids 17, 103301.Google Scholar
Chen, H., Su, D. & Chen, K. 2001 Some case studies on the engineering geological characteristics of debris flows in Taiwan. Western Pacific Earth Sci. 1 (3), 265296.Google Scholar
Coussot, P. 1997 In Mudflow Rheology and Dynamics IAHR Monograph Series, Balkema.Google Scholar
Dent, J. D., Burrell, K. J., Schmidt, D. S., Louge, M. Y., Adams, E. E. & Jazbutis, T. G. 1998 Density, velocity and friction measurements in a dry-snow avalanche. Ann. Glaciol. 26, 247252.Google Scholar
Genevois, R., Tecca, P. R., Berti, M. & Simoni, A. 2000 Debris-flows in the dolomites: experimental data from a monitoring system. In Debris-Flow Hazard Mitigation: Mechanics, Prediction and Assessment (ed. Wieczorek, G. F. & Naeser, N. D.), pp. 283291. Balkema.Google Scholar
George, D. L. & Iverson, R. M. 2011 A two-phase debris flow model that includes coupled evolution of the volume fractions, granular dilatancy, and pore-fluid pressure. In Italian Journal of Engineering Geology and Environment – Book (5th International Conference on Debris-Flow Hazards: Mitigation, Mechanics, Prediction and Assessment, Padua, 14–17 June 2011) (ed. Genevois, R., Hamilton, D. L. & Prestininzi, A.), pp. 415424. Casa Editrice Università La Sapienza.Google Scholar
GDR MiDi, 2004 On dense granular flows. Eur. Phys. J. E 14, 314365.Google Scholar
Hsu, L.Bedrock erosion by granular flow. Dissertation at the University of California at Berkeley, USA.Google Scholar
Hunt, M. L., Zenit, R., Campbell, C. S. & Brennen, C. E. 2002 Revisiting the 1954 suspension experiments of R. A. Bagnold. J. Fluid Mech. 452, 124.CrossRefGoogle Scholar
Iverson, R. M. 1997 The physics of debris flows. Rev. Geophys. 35 (3), 245296.Google Scholar
Iverson, R. M. 2003 The debris-flow rheology myth. In Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment; Proceedings of the 3rd International DFHM Conference, Davos, Switzerland, 10–12 September 2003 (ed. Rickenmann, D. & Chen, C. L.), pp. 303314. Millpress.Google Scholar
Iverson, R. M. 2013 Mechanics of debris flows and rock avalanches. In Handbook of Environmental Fluid Dynamics, Vol. 1 (ed. Fernando, H. J. S.), pp. 573587. CRC/Taylor & Francis.Google Scholar
Iverson, R. M., Logan, M., LaHusen, R. G. & Berti, M. 2010 The perfect debris flow? Aggregated results from 28 large-scale experiments. J. Geophys. Res. 115, F03005.Google Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2005 Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167192.Google Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441, 727730.CrossRefGoogle ScholarPubMed
Johnson, A. M. 1970 Physical Processes in Geology. Freeman and Cooper.Google Scholar
Johnson, C. G., Kokelaar, B. P., Iverson, R. M., Logan, M., LaHusen, R. G. & Gray, J. M. N. T. 2012 Grain-size segregation and levee formation in geophysical mass flows. J. Geophys. Res. 117, F01032.Google Scholar
Kaitna, R. & Rickenmann, D. 2007 A new experimental facility for laboratory debris flow investigation. J. Hydraul Res. 45 (6), 797810.Google Scholar
Kaitna, R. & Rickenmann, D. 2008 Flow of different material mixtures in a rotating drum. In Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment. Proceedings of the 4th International DFHM Conference, Chengdu, China, 10–13 September 2007 (ed. Cui, P. & Cheng, Ch.), Millpress.Google Scholar
Kaitna, R., Hsu, L., Rickenmann, D. & Dietrich, W. E. 2011 On the development of an unsaturated front of debris flows. In Italian Journal of Engineering Geology and Environment – Book, (5th International Conference on Debris-Flow Hazards: Mitigation, Mechanics, Prediction and Assessment, Padua, 14–17 June 2011) (ed. Genevois, R., Hamilton, D. L. & Prestininzi, A.), pp. 351358. Casa Editrice Università La Sapienza.Google Scholar
Kern, M., Bartelt, P., Sovilla, B. & Buser, O. 2009 Measured shear rates in large dry and wet snow avalanches. J. Glaciol. 55 (190), 327338.Google Scholar
Kern, M. A., Tiefenbacher, F. & McElwaine, J. N. 2004 The rheology of snow in large chute flows. Cold Reg. Sci. Technol. 39, 181192.Google Scholar
Longo, S. & Lamberti, A. 2002 Grain shear flow in a rotating drum. Exp. Fluids 32, 313325.Google Scholar
Louge, M., Tuccio, M., Lander, E. & Connors, P. 1996 Capacitance measurements of the volume fraction and velocity of dielectric solids near a grounded wall. Rev. Sci. Instrum. 67, 18691877.Google Scholar
Mainali, A. & Rajaratnam, N. 1994 Experimental study of debris flows. J. Hydraul. Engng 120 (1), 104123.Google Scholar
Marchi, L., Arattano, M. & Deganutti, A. M. 2002 Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology 46, 117.CrossRefGoogle Scholar
McArdell, B. W., Bartelt, P. & Kowalski, J. 2007 Field observations of basal forces and fluid pressure in a debris flow. Geophys. Res. Lett. 34, L07406.Google Scholar
McCoy, S. W., Kean, J. W., Coe, J. A., Staley, D. M., Wasklewicz, T. A. & Tucker, G. E. 2010 Evolution of a natural debris flow: in situ measurements of flow dynamics, video imagery, and terrestrial laser scanning. Geology 38, 735738.Google Scholar
McElwaine, J. N. & Tiefenbacher, F. 2003 Calculating internal avalanche velocities from correlation with error analysis. Surv. Geophys. 24, 499524.Google Scholar
O’Brien, J. S., Julien, P. Y. & Fullerton, W. T. 1993 Two-dimensional water flood and mudflow simulation. J. Hydraul. Engng 119 (2), 244261.CrossRefGoogle Scholar
Pierson, T. C. 1981 Dominant particle support mechanisms in debris flows at Mt Thomas, New Zealand, and implications for flow mobility. Sedimentology 28, 4960.CrossRefGoogle Scholar
Pierson, T. C. 1986 Flow behaviour of channelized debris flows, Mount St. Helens, Washington. In Hillslope Processes (ed. Abrahams, A. D.), pp. 269296. Allen and Unwin.Google Scholar
Pouliquen, O. & Forterre, Y. 2009 A non-local rheology for dense granular flows. Phil. Trans. R. Soc. A 367, 50915107.Google Scholar
Pudasaini, S. P. 2012 A general two-phase debris flow model. J. Geophys. Res. 117, F03010.Google Scholar
Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177215.CrossRefGoogle Scholar
Schaefer, M., Bugnion, L., Kern, M. & Bartelt, P. 2010 Position dependent velocity profiles in granular avalanches. Granul. Matt. 12 (3), 327336.CrossRefGoogle Scholar
Schneider, D., Kaitna, R., Hsu, L., McArdell, B. W. & Huggel, C. 2011 Rock-ice avalanches: frictional behaviour of granular rock-ice mixtures in vertically rotating drum experiments. CRST 69, 7090.Google Scholar
Takahashi, T. 1991 In Debris Flow IAHR Monograph Series, Balkema.Google Scholar
Tiefenbacher, F. & Kern, M. A. 2004 Experimental devices to determine snow avalanche basal friction and velocity profiles. Cold Reg. Sci. Technol. 38, 1730.Google Scholar