Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T07:20:54.158Z Has data issue: false hasContentIssue false

30 - Electrical stimulation

from Part VI - Brain interfaces

Published online by Cambridge University Press:  05 September 2015

Sudip Nag
Affiliation:
National University of Singapore
Dinesh Sharma
Affiliation:
Indian Institute of Technology, Bombay
Nitish V. Thakor
Affiliation:
Johns Hopkins University
Sandro Carrara
Affiliation:
École Polytechnique Fédérale de Lausanne
Krzysztof Iniewski
Affiliation:
Redlen Technologies Inc., Canada
Get access

Summary

This chapter explores electrical stimulation of excitable biological entities. It provides a brief history of electrical stimulation, stimulation parameters, theory of electrode interface impedance, and types of stimulation. Focus is on the technology of charge balancing, power losses, voltage compliance, and associated hardware complexities of electrical stimulators. Stimulus artifacts and inductive power delivery are also discussed, and are often used with stimulators for applications in neural prostheses and therapeutics [1, 2].

Introduction

Electrical stimulation is an important and popular method in which injected charges are mainly responsible for excitation or inhibition of neural or motor structures [3–5]. It can be utilized for treatment of diseases and restoration of dysfunctional organs, such as for the brain [6, 7], retina [8, 9], cochlea [10], or peripheral nerve [11]. The electrical stimulation process is accomplished by using conductive electrodes of specific size and shape, which are placed at desired biological sites of interest. Coulombic charge is injected through such electrodes by means of constant current or constant voltage pulses. Charge injection accuracy, power loss minimization, output voltage compliance, and miniaturization are important factors that can enhance practical performance in electronic stimulators [12]. In the following subsections we provide a brief history and introduce technical parameters associated with electrical stimulation.

Type
Chapter
Information
Handbook of Bioelectronics
Directly Interfacing Electronics and Biological Systems
, pp. 365 - 378
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Peckham, P. H. and Knutson, J. S., “Functional electrical stimulation for neuromuscular applications,” Annual Review of Biomedical Engineering, vol. 7, pp. 327–360, Mar. 2005.CrossRefGoogle ScholarPubMed
Fried, I., Katz, A., McCarthy, G., et al., “Functional organization of human supplementary motor cortex studied by electrical stimulation,” Journal of Neuroscience, vol. 11, no. 11, pp. 3656–3566, Nov. 1991.CrossRefGoogle ScholarPubMed
Guyton, A. C. and Hall, J. E., Textbook of Medical Physiology, 11th Edition. Elsevier Saunders, 2006.Google Scholar
Bretschneider, F. and de Weille, J. R., Introduction to Electrophysiological Methods and Instrumentation. Elsevier Academic Press, 2006.Google Scholar
Fang, J. W. X., Granacki, J., LaCoss, J., Arakelian, A., and Weiland, J., “Novel charge-metering stimulus amplifier for biomimetic implantable prosthesis,” in Proceedings of the International Symposium on Circuits and Systems, New Orleans, USA, May 2007, pp. 569–572.Google Scholar
Aziz, T. Z., Jenkinson, N., Kringelbach, M., and Owen, S., “Translational principles of deep brain stimulation,” Nature Reviews Neuroscience, vol. 8, no. 8, pp. 323–335, Jul. 2007.Google Scholar
Afraz, S., Kiani, R., and Esteky, H., “Microstimulation of inferotemporal cortex influences face categorization,” Nature, vol. 442, no. 7103, pp. 692–695, Aug. 2006.CrossRefGoogle ScholarPubMed
Humayun, M. S., “Intraocular retinal prosthesis,” Transactions of the American Ophthalmological Society, vol. 99, pp. 271–300, 2001.Google ScholarPubMed
Rizzo, J. F., “Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays,” Investigative Ophthalmology, vol. 44, no. 12, pp. 5355–5361, Dec. 2003.CrossRefGoogle ScholarPubMed
Skarzynski, H., Lorens, A., Piotrowska, I., and Anderson, I., “Partial deafness cochlear implantation provides benefit to a new population of individuals with hearing loss,” Acta Oto-Laryngologica, vol. 126, no. 9, pp. 1–7, Sep. 2006.CrossRefGoogle Scholar
Karaca, P., Hadzic, A., Yufa, M., et al., “Painful paresthesiae are infrequent during brachial plexus localization using low current peripheral nerve stimulation,” Regional Anesthesia and Pain Medicine, vol. 28, no. 5, pp. 380–383, Oct. 2003.CrossRefGoogle ScholarPubMed
Kelly, S. K., “A system for efficient neural stimulation with energy recovery,” unpublished Ph.D. dissertation, Massachusetts Institute of Technology, 2003.
Stillings, D., “A survey of the history of electrical stimulation for pain to 1900,” Medical Instrumentation, vol. 9, no. 6, pp. 255–259, Dec. 1975.Google ScholarPubMed
Wesley, R. J., The desideratum: or, Electricity made plain and useful. Bailliere, Tindall, and Cox, 1759.Google Scholar
Galvani, L., “Memorie sulla elettricit animale,” Bologna: Per le stampe del Sassi, vol. 7, pp. 363–418, 1797.Google Scholar
Erb, W., Handbook of Electro-therapeutics. W. Wood and Co., 1883.Google Scholar
Liberson, W. T., Holmquest, H. J., Scot, D., and Dow, M., “Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients,” Archives of Physical Medicine and Rehabilitation, vol. 42, pp. 101–105, Feb. 1961.Google ScholarPubMed
Asadi, M., Torkaman, G., and Hedayati, M., “Effect of sensory and motor electrical stimulation in vascular endothelial growth factor expression of muscle and skin in full-thickness wound,” Journal of Rehabilitation Research and Development, vol. 48, no. 3, pp. 195–201, 2011.CrossRefGoogle ScholarPubMed
Boon, P., Raedt, R., de Herdt, V., Wyckhuys, T., and Vonck, K., “Electrical stimulation for the treatment of epilepsy,” Neurotherapeutics, vol. 6, no. 2, pp. 218–217, Apr. 2009.CrossRefGoogle ScholarPubMed
Lozano, A. M., Mayberg, H. S., Giacobbe, P. et al. “Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression,” Biological Psychiatry, vol. 64, no. 6, pp. 461–467, Sep. 2008.CrossRefGoogle ScholarPubMed
Lilly, J. C., Hughes, J. R., Alvord, E. C., and Galkin, T. W., “Brief, noninjurious electric waveform for stimulation of the brain,” Science, vol. 121, no. 3144, pp. 468–469, Apr. 1955.CrossRefGoogle Scholar
McCreery, D. B., Agnew, W. F., Yuen, T. G., and Bullara, L., “Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation,” IEEE Transactions on Biomedical Engineering, vol. 37, no. 10, pp. 996–1001, Oct. 1990.CrossRefGoogle ScholarPubMed
Asanuma, H., Arnold, A., and Zarzecki, P., “Further study on the excitation of pyramidal tract cells by intracortical microstimulation,” Springer Experimental Brain Research, vol. 26, no. 0, pp. 443–461, Oct. 1976.Google ScholarPubMed
Crozier, W. J., “Strength–duration curves and the theory of electrical excitation,” Proceedings National Academy of Sciences, vol. 23, no. 2, pp. 71–78, Feb. 1937.CrossRefGoogle ScholarPubMed
Geddes, L. and Bourland, J., “The strength–duration curve,” IEEE Transactions on Biomedical Engineering, vol. BLE-32, no. 6, pp. 458–459, Jun. 1985.CrossRefGoogle Scholar
Sarpeshkar, R., Ultra Low Power Bioelectronics. Cambridge University Press, 2010.CrossRefGoogle Scholar
Cogan, S., “Neural stimulation and recording electrodes,” Annual Review of Biomedical Engineering, vol. 10, pp. 275–309, 2008.CrossRefGoogle ScholarPubMed
Randles, J. E. B. and Somerton, K. W., “Kinetics of rapid electrode reactions,” Transactions of Faraday Society, vol. 48, no. 0, pp. 828–832, May 1952.CrossRefGoogle Scholar
Borkholder, D. A., “Cell based biosensors using microelectrodes,” Unpublished Ph.D. dissertation, Stanford University, 1998.
McAdams, E. T., Lackermeier, A., Mclaughlin, J. A., and Macken, D., “The linear and nonlinear electrical properties of the electrode-electrolyte interface,” Biosensors and Bioelectronics, vol. 10, no. 2, pp. 67–74, 1995.CrossRefGoogle Scholar
Gunning, D., Adams, C., Cunningham, W., et al. “30 m spacing 519-electrode arrays for in vitro retinal studies,” Elsevier Nuclear Instruments and Methods in Physics Research A, vol. 546, pp. 148–153, Apr. 2005.CrossRefGoogle Scholar
Temel, Y., Vanderwalle, V. V., Wolf, M. V. D., et al., “Monopolar versus bipolar high frequency stimulation in the rat subthalamic nucleus: Differences in histological damage,” Neuroscience Letters, vol. 367, no. 1, pp. 92–96, Aug. 2004.CrossRefGoogle ScholarPubMed
Brugger, D., Butovas, S., Bodgan, M., and Schwarz, C., “Real-time adaptive microstimulation increases reliability of electrically evoked cortical potentials,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 5, pp. 1483–1491, May 2011.CrossRefGoogle ScholarPubMed
Walter, P. and Heimann, K., “Evoked cortical potentials after electrical stimulation of the inner retina in rabbits,” Graefe’s Archive for Clinical and Experimental Ophthalmology, vol. 238, no. 238, pp. 315–318, Apr. 2000.CrossRefGoogle ScholarPubMed
Liu, W. and Humayun, M. S., “Retinal prosthesis,” in Proceedings of the IEEE International Solid State Circuits Conference, San Francisco, USA, Feb. 2004, pp. 1–9.Google Scholar
Ni, D., Shepherd, R. K., Seldon, H. L., et al., “Cochlear pathology following chronic electrical stimulation of the auditory nerve. I. Normal hearing kittens,” Elsevier Hearing Research, vol. 62, no. 1, pp. 63–81, Sep. 1992.CrossRefGoogle ScholarPubMed
Shepherd, R. K., Linahan, N., Xu, J., Clark, G. M., and Araki, S., “Chronic electrical stimulation of the auditory nerve using non-charge-balanced stimuli,” Acta Otolaryngology, vol. 119, no. 6, pp. 674–684, 1999.CrossRefGoogle ScholarPubMed
Ortmanns, M., “Charge balancing in functional electrical stimulators, a comparative study,” in Proceedings of the IEEE International Symposium on Solid State Circuits, New Orleans, USA, May 2007, pp. 573–576.Google Scholar
Huang, C. Q., Shepherd, R. K., Carter, P. M., Seligman, P. M., and Tabor, B., “Electrical stimulation of the auditory nerve: Direct current measurement in vivo,” IEEE Transactions on Biomedical Engineering, vol. 46, no. 4, pp. 461–470, Apr. 1999.CrossRefGoogle ScholarPubMed
Liu, X., Demosthenous, A., and Donaldson, N., “An integrated implantable stimulator that is fail-safe without off-chip blocking-capacitors,” IEEE Transactions on Biomedical Circuits and Systems, vol. 2, no. 3, pp. 231–244, Sep. 2008.CrossRefGoogle Scholar
Sit, J. J. and Sarpeshkar, R., “A low-power blocking-capacitor-free charge-balanced electrode-stimulator chip with less than 6 nA dc error for 1 mA full-scale stimulation,” IEEE Transactions on Biomedical Circuits Systems, vol. 1, no. 3, pp. 172–183, Sep. 2007.CrossRefGoogle Scholar
Sivaprakasam, M., Liu, W., Humayun, M. S., and Weiland, J. D., “A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device,” IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp. 763–771, Mar. 2005.CrossRefGoogle Scholar
Wagenaar, D., Pine, J., and Potter, S., “Effective parameters for stimulation of dissociated cultures using multi-electrode arrays,” Journal of Neuroscience Methods, vol. 138, no. 1–2, pp. 27–37, Sep. 2004.CrossRefGoogle ScholarPubMed
Grumet, A. E., Wyatt, J. L., and Rizzo, J. F., “Multi-electrode stimulation and recording in the isolated retina,” Journal of Neuroscience Methods, vol. 101, no. 1, pp. 31–42, Aug. 2000.CrossRefGoogle ScholarPubMed
Borkholder, D. A., Bao, J., Maluf, N. I., Perl, E. R., and Kovacs, G., “Microelectrode arrays for stimulation of neural slice preparations,” Journal of Neuroscience Methods, vol. 77, no. 1, pp. 61–66, Nov. 1997.CrossRefGoogle ScholarPubMed
Constandinou, T. G., Georgiou, J., and Toumazou, C., “A partial-current-steering biphasic stimulation driver for vestibular prostheses,” IEEE Transactions on Biomedical Circuits and Systems, vol. 2, no. 2, pp. 106–113, Jun. 2008.CrossRefGoogle ScholarPubMed
Sooksood, K., Stieglitz, T., and Ortmanns, M., “An active approach for charge balancing in functional electrical stimulation,” IEEE Transactions on Biomedical Circuits and Systems, vol. 4, no. 3, pp. 162–170, Jun. 2010.CrossRefGoogle ScholarPubMed
Gwilliam, J. C. and Horch, K., “A charge-balanced pulse generator for nerve stimulation applications,” Journal of Neuroscience Methods, vol. 168, no. 1, pp. 146–150, Feb. 2008.CrossRefGoogle ScholarPubMed
Kelly, S. K. and Wyatt, J. L., “A power-efficient neural tissue stimulator with energy recovery,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, no. 1, pp. 20–29, Feb. 2011.CrossRefGoogle ScholarPubMed
Arfin, S. and Sarpeshkar, R., “An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 1, pp. 1–14, Feb. 2012.CrossRefGoogle ScholarPubMed
Keefer, E. W., Botterman, B. R., Romero, M. I., Ross, A. F., and Gross, G. W., “Carbon nanotube coating improves neuronal recordings,” Nature Nanotechnology, vol. 3, no. 174, pp. 434–439, July 2008.CrossRefGoogle ScholarPubMed
Ghoovanloo, M. and Najafi, K., “A compact large voltage-compliance high output-impedance programmable current source for implantable microstimulators,” IEEE Transactions of Biomedical Engineering, vol. 52, no. 1, pp. 97–105, Jan. 2005.CrossRefGoogle Scholar
Wheeler, H. A., “Formulas for the skin effect,” Proceedings of the IRE, vol. 30, no. 9, pp. 412–424, Sep. 1942.CrossRefGoogle Scholar
Mandal, S., Turicchia, L., and Sarpeshkar, R., “A low-power, battery-free tag for body sensor networks,” IEEE Pervasive Computing, vol. 9, no. 1, pp. 71–77, Mar. 2010.CrossRefGoogle Scholar
Lee, H. M. and Ghovanloo, M., “A high frequency active voltage doubler in standard CMOS using offset-controlled comparators for inductive power transmission,” IEEE Transactions on Biomedical Circuits and Systems, vol. PP, no. 99, pp. 1–12, 2013.Google Scholar
Mounaim, F. and Sawan, M., “Integrated high-voltage inductive power and data-recovery front end dedicated to implantable devices,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, no. 3, pp. 283–291, Jun. 2011.CrossRefGoogle ScholarPubMed
Wu, L., Yang, Z., Basham, E., and Liu, W., “An efficient wireless power link for high voltage retinal implant,” in Proceedings of the IEEE Biomedical Circuits and Systems Conference, Nov. 2008, pp. 101–104.
Noorsal, E., Sooksood, K., Hongcheng, X., et al. “A neural stimulator frontend with high-voltage compliance and programmable pulse shape for epiretinal implants,” IEEE Journal of Solid-State Circuits, vol. 47, no. 1, pp. 244–256, Jan. 2012.CrossRefGoogle Scholar
Clements, M., Vichienchom, K., Liu, W., Hughes, C., and McGucken, E., “An implantable neuro-stimulator device for retinal prosthesis,” in IEEE Solid States Circuits Conference, Feb. 1999, pp. 216–217.Google Scholar
Blum, R. A., Ross, J. D., Brown, E. A., and DeWeerth, S. P., “An integrated system for simultaneous, multichannel neuronal stimulation and recording,” IEEE Transactions on Circuits and Systems, vol. 54, no. 12, pp. 2608–2618, Dec. 2007.CrossRefGoogle Scholar
Grumet, A. E., “Electric stimulation parameters for an epi-retinal prosthesis,” Unpublished Ph.D. dissertation, Massachusetts Institute of Technology, 1999.
Nag, S., Jia, X., Thakor, N. V., and Sharma, D., “Flexible charge balanced stimulator with 5.6 fC accuracy for 140 nC injections,” IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 3, pp. 266–275, Jun. 2013.CrossRefGoogle ScholarPubMed
REF200, Dual current source/current sink, PDS-851D, Texas Instruments, Oct. 1993.
Gionfriddo, M., Greenberg, A., Wahegaonkar, A., and Lee, K., “Pathways of translation: Deep brain stimulation,” Clinical and Translational Science, vol. 6, no. 6, pp. 497–501, Apr. 2013.CrossRefGoogle ScholarPubMed
Jahanshahi, M., “Effects of deep brain stimulation of the subthalamic nucleus on inhibitory and executive control over prepotent responses in Parkinsons disease,” Frontiers in Systems Neuroscience, vol. 7, no. 118, pp. 1–20, Dec. 2013.CrossRefGoogle Scholar
Silva, F., Blanes, W., Kalitzin, S., Parra, P. S. J., and Velis, D., “Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity,” Epilepsia, vol. 44, no. 12, pp. 72–83, 2003.CrossRefGoogle Scholar
Guo, H., Zhang, H., Kuang, Y., et al., “Electrical stimulation of the substantia nigra pars reticulata (snr) suppresses chemically induced neocortical seizures in rats,” Journal of Molecular Neuroscience, vol. published online, Jan. 2014.CrossRefGoogle ScholarPubMed
Nagel, S. and Najm, I., “Deep brain stimulation for epilepsy,” Neuromodulation, vol. 12, no. 4, pp. 270–280, Aug. 2009.CrossRefGoogle ScholarPubMed
Boccard, S., Pereira, E., Moir, L., Aziz, T. Z., and Green, A., “Long-term outcomes of deep brain stimulation for neuropathic pain,” Neurosurgery, vol. 72, no. 2, pp. 221–231, Feb. 2013.CrossRefGoogle ScholarPubMed
Aziz, T., Green, A., Nandi, D., and Pereira, E., “Deep brain stimulation: Indications and evidence,” Expert Review of Medical Devices, vol. 4, no. 5, pp. 591–601, Sep. 2007.Google Scholar
Kelly, S., Shire, D., Chen, J., et al., “A hermetic wireless subretinal neurostimulator for vision prostheses,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 11, pp. 3197–3205, Nov. 2011.CrossRefGoogle ScholarPubMed
Shire, D. B., Kelly, S. K., Chen, J., et al., “Development and implantation of a minimally invasive wireless subretinal neurostimulator,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 10, pp. 2502–2511, Oct. 2009.CrossRefGoogle ScholarPubMed
Navarro, X., Krueger, T., Lago, N., et al., “A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems,” Journal of Peripheral Nerve Systems, vol. 10, pp. 229–258, Sep. 2005.CrossRefGoogle ScholarPubMed
Nielsen, T., Sevcencu, C., and Struijk, J., “Comparison of mono-, bi-, and tripolar congurations for stimulation and recording with an interfascicular interface,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 22, no. 1, pp. 88–95, Jan. 2014.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×