Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T05:33:41.841Z Has data issue: false hasContentIssue false

29 - Reducing the implant footprint: low-area neural recording

from Part VI - Brain interfaces

Published online by Cambridge University Press:  05 September 2015

Rikky Muller
Affiliation:
University of California, Berkeley
Simone Gambini
Affiliation:
University of Melbourne
Jan M. Rabaey
Affiliation:
University of California, Berkeley
Sandro Carrara
Affiliation:
École Polytechnique Fédérale de Lausanne
Krzysztof Iniewski
Affiliation:
Redlen Technologies Inc., Canada
Get access

Summary

Introduction to motor prosthetics

Fritsch and Hitzig first discovered the motor cortex in 1870 [1], although the best-known experimental mapping of the motor cortex dates back to Penfield’s experiments in 1937 [2] using electrical stimulation to activate muscle groups in patients undergoing surgery for epilepsy. It was not until the 1980s, over 100 years since the discovery of the motor cortex, that population coding [3] was proposed and thus the beginnings of decoding neural signals in the motor cortex into their corresponding motor function.

In 1998 the first human was implanted with a brain–machine interface (BMI) of high enough quality to simulate movement and demonstrated two-dimensional control of a mouse cursor [4],[5]. Since then, there has been an explosion of demonstrations of motor prosthetic control of computer cursors and robotic arms by both primates and humans. In the last year, the same group demonstrated robotic arm control with four degrees of freedom in a tetraplegic patient [6]. These demonstrations mark a significant step in bringing BMIs from the research arena to viable medical devices, but a number of technological hurdles must still be overcome to make this a reality.

A simplified diagram of a BMI system is exemplified in Figure 29.1. A full BMI system involves a recording device to take signals directly from the motor cortex.

Type
Chapter
Information
Handbook of Bioelectronics
Directly Interfacing Electronics and Biological Systems
, pp. 352 - 364
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fritsch, G. and Hitzig, E. (1870). “Über die elektrische Erregbarkeit des Grosshirns”. Arch. Anatomische, Physiologische, und Wissenschaftliche Medizin, pp. 300–332. Translated in: von Bonin, G., ed. (1960). Some Papers on the Cerebral Cortex. Springfield IL: Charles Thomas, pp. 73–96.Google Scholar
Penfield, W. and Boldrey, E.Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation”. Brain,Vol. 60, No. 4, pp. 389–443, 1937.CrossRefGoogle Scholar
Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., and Massey, J.T. (1982). “On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex”. J. Neurosci., Vol. 2, No. 11, pp. 1527–1537.CrossRefGoogle ScholarPubMed
Chapin, J. K., Moxon, K. A., Markowitz, R. S., and Nicolelis, M. A. L., “Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex,” Nature Neurosci., Vol. 2, pp. 664–670, 1999.CrossRefGoogle ScholarPubMed
Kennedy, P.R. and Bakay, R.A., “Restoration of neural output from a paralyzed patient by a direct brain connection.” NeuroReport, Vol. 9, No. 8, pp. 1707–1711, 1998.CrossRefGoogle ScholarPubMed
Hochberg, L., Bacher, D., Jarosiewicz, B., et al. “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm.” Nature, Vol. 485, pp. 372–375, May 2012.CrossRefGoogle ScholarPubMed
Li, Z., O’Doherty, J.E., Hanson, T.L., et al. “Unscented Kalman filter for brain-machine interfaces.” PLoS ONE, Vol. 4, No. 7, e6243, Jul. 2009.CrossRefGoogle ScholarPubMed
Hochberg, L.R., Serruya, M.D., Friehs, G.M., et al. “Neuronal ensemble control of prosthetic devices by a human with tetraplegia.” Nature, Vol. 442, pp. 164–171, Jul. 2006.CrossRefGoogle ScholarPubMed
Turner, J.N., Shain, W., Szarowski, D.H., et al. “Cerebral astrocyte response to micromachined silicon implants.” Exp. Neurol., Vol. 156, No. 1, pp. 33–49, Mar. 1999.CrossRefGoogle ScholarPubMed
“IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 KHz to 300 GHz,” IEEE Std C95.1–2005, 2006.
Nicolelis, M.A.L.. “Actions from thoughts.” Nature, Vol. 409, pp. 403–407, Jan. 2001.CrossRefGoogle ScholarPubMed
Avestruz, A.T., Santa, W., Carlson, D., et al. “A 5uW/channel spectral analysis ic for chronic bidirectional brain–machine interfaces.” IEEE J. Solid-State Circ., Vol. 43, No. 12, pp. 3006–3024, Dec. 2008.CrossRefGoogle Scholar
Jackson, A., Mavoori, J., and Fetz, E.E.. “Long-term motor cortex plasticity induced by an electronic neural implant.” Nature, Vol. 444, pp. 56–60, Nov. 2006.CrossRefGoogle ScholarPubMed
Pais-Vieira, M., Lebedev, M., Kunicki, C., Wang, J., and Nicolelis, M.A.L. “A brain-to-brain interface for real-time sharing of sensorimotor information.” Sci. Rep., Vol. 3, Article No. 1319, Feb. 2013.CrossRefGoogle ScholarPubMed
Pasley, B.N., David, S.V., Mesgarani, N., et al. “Reconstructing speech from human auditory cortex.” PLoS Biol., Vol. 10, No. 1, e1001251, Jan. 2012.CrossRefGoogle ScholarPubMed
Aziz, J.N.Y., Abdelhalim, K., Shulyzki, R., et al. “256-channel neural recording and delta compression microsystem with 3-D electrodes.” IEEE J. Solid-State Circ., Vol. 44, No. 3, pp. 995–1005, Mar. 2009.CrossRefGoogle Scholar
Harrison, R.R., Watkins, P.T., Kier, R.J., et al. “A low-power integrated circuit for a wireless 100-electrode neural recording system.” IEEE J. Solid-State Circ., Vol. 42, No. 1, pp. 123–133, Jan. 2007.CrossRefGoogle Scholar
Palmer, C.. “A microwire technique for recording single neurons in unrestrained animals.” Brain Res. Bull., Vol. 3, No. 3, pp. 285–298, May 1978.CrossRefGoogle ScholarPubMed
Nicolelis, M.A.L., Ghazanfar, A.A., Faggin, B.M., Votaw, S., and Oliveira, L.M.O.. “Reconstructing the engram: simultaneous, multisite, many single neuron recordings.” Neuron, Vol. 18, pp. 529–537, Apr. 1997.CrossRefGoogle ScholarPubMed
Campbell, P.K., Jones, K.E., Huber, R.J., Horch, K.W., Normann, R.A.. “A silicon-based, three-dimensional neural interface: manufacturing profess for an intracortical electrode array.” IEEE Trans. Biomed. Eng. Vol. 38, No. 8, Aug. 1991.CrossRefGoogle Scholar
Olsson, R.H. and Wise, K.D.. “A three-dimensional neural recording microsystem with implantable data compression circuitry.” IEEE J. Solid-State Circ., Vol. 40, No. 12, Dec. 2005.CrossRefGoogle Scholar
Blanche, T.J., Spacek, M.A., Hetke, J.F., Swindale, N.V.. “Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording.” J. Neurophysiol., Vol. 93, pp. 2987–3000, 2005.CrossRefGoogle ScholarPubMed
Seidl, K., Herwik, S., Torfs, T., et al. “CMOS-based high-density silicon microprobe arrays fro electronic depth control in intracortical neural recordings.” IEEE J. Microelectromech. Systems, Vol. 20, No. 6, Dec. 2011.CrossRefGoogle Scholar
Mora Lopez, C., Andrei, A., Mitra, S., et al. “An implantable 455-active-electrode 52-channel CMOS neural probe.” IEEE Int. Solid-State Circ. Conf. Dig. Tech. Papers, pp. 288–289, Feb. 2013.Google Scholar
Ledochowitsch, P., Felus, R.J., Gibboni, R.R., et al. “Fabrication and testing of a large area, high density, parylene MEMS uECoG array.” IEEE Proc. MEMS Conf., pp. 1031–1034, 2011.Google Scholar
Rabaey, J.M., Mark, M., Chen, D., et al. “Powering and communicating with mm-size implants.” Proc. DATE Conf. p. 6, 2011.Google Scholar
O’Driscoll, S., Poon, A., and Meng, T.A mm-sized implantable power receiver with adaptive link compensation.” IEEE Solid-State Circ. Conf. Dig. Tech. Papers, pp. 294–295, 2009.Google Scholar
Mark, M., Chen, Y., Sutardja, C., et al. “A 1 mm3 2 Mbps 330 fJ/b transponder for implanted neural sensors.” Proc. VLSI Symp., pp. 168–169, 2011.Google Scholar
Bjorninen, T., Muller, R., Ledochowitsch, P., et al. “Design of wireless links to implanted brain–machine interface systems.” IEEE Antennas Wireless Propag. Lett., Vol. 11, pp. 1663–1666, Jan. 2012.CrossRefGoogle Scholar
Wattanapanitch, W., Fee, M., and Sarpeshkar, R.. “An energy-efficient micropower neural recording amplifier.” IEEE Trans. Biomed. Circ. Systems, Vol. 1, No. 2, pp. 136–147, Jun. 2007.CrossRefGoogle ScholarPubMed
Jochum, T., Denison, T., and Wolf, P.. “Integrated circuit amplifiers for multi-electrode intracortical recording.” J. Neural Eng., Vol. 6, No. 9, 012001, Feb. 2009.CrossRefGoogle ScholarPubMed
Shahrokhi, F., Abdelhalim, K., Serletis, D., Carlen, P., and Genov, R., “The 128-channel fully differential digital integrated neural recording and stimulation interface,” IEEE Trans. Biomed. Circ. Systems, Vol. 4, no. 3, pp. 149–161, Jun. 2010.CrossRefGoogle ScholarPubMed
Gosselin, B., Ayoub, A. E., Roy, J.-F., et al. “A mixed-signal multichip neural recording interface with bandwidth reduction,” IEEE Trans. Biomed. Circ. Syst., Vol. 3, No. 3, pp. 129–141, 2009.CrossRefGoogle ScholarPubMed
Holleman, J. and Otis, B.. “A sub-microwatt low-noise amplifier for neural recording.” IEEE Proc. Eng. Med. Biol. (EMBS), pp. 3930–3933, Aug. 2007.Google ScholarPubMed
Chae, M. S., Yang, Z., Yuce, M. R., Hoang, L., and Liu, W., “A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter,” IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 17, no. 4, pp. 312–321, 2009.CrossRefGoogle ScholarPubMed
Johnson, B., DeTomaso, D., and Molnar, A.. “A low-power orthogonal current-reuse amplifier for parallel sensing applications.” IEEE Proc. Eur. Solid-State Circ. Conf., pp. 318–321, Sep. 2010.Google Scholar
Walker, R.M., Gao, H., Nuyujukian, P., et al. “A 96-channel full data rate direct neural interface in 0.13 μm CMOS,” Symp. VLSI Circ. Dig. Tech. Papers, pp. 144–145, Jun. 2011.Google Scholar
Muller, R., Gambini, S., and Rabaey, J.M.. “A 0.013mm2, 5 μW, DC-coupled neural signal acquisition IC with 0.5V supply.” IEEE J. Solid-State Circ., Vol. 47, No. 1, pp. 232–243, Jan. 2012.CrossRefGoogle Scholar
Mohseni, P. and Najafi, K.. “A fully integrated neural recording amplifier with DC input stabilization.” IEEE Trans. Biomed. Eng., Vol. 51, No. 5, pp. 832–837, May 2004.CrossRefGoogle ScholarPubMed
Franks, W., Schenker, I., Schmutz, P., and Hierlemann, A.. “Impedance characterization and modeling of electrodes for biomedical applications.” IEEE Trans. Biomed. Eng., Vol. 52, No. 7, pp. 1295–1302, Jul. 2005.CrossRefGoogle ScholarPubMed
Straayer, M.Z. and Perrott, M.H.. “A 12-bit, 10-MHz bandwidth, continuous-time ΣΔ ADC with a 5-bit, 950MS/s VCO-based quantizer.” IEEE J. Solid-State Circ., Vol. 43, No. 4, pp. 805–814, Apr. 2008.CrossRefGoogle Scholar
Wismar, U., Wisland, D., and Andreani, P.. “Linearity of bulk-controlled inverter ring VCO in weak and strong inversion.” Analog Integr. Circ. Sig. Process., Vol. 50, No. 1, pp. 59–67, 2007.CrossRefGoogle Scholar
Bohorquez, J., Yip, M., Chandrakasan, A., Dawson, J.. “A biomedical sensor interface with a sinc filter and interference cancellation.” IEEE J. Solid-State Circ., Vol. 46, No. 4, pp. 746–756, Apr. 2011.CrossRefGoogle Scholar
Venkatraman, S. and Carmena, J.M.. “Active sensing of target location encoded by cortical microstimulation.” IEEE Neural Systems Rehabil. Eng., Vol. 19, No. 3, pp. 317–324, Jun. 2011.CrossRefGoogle ScholarPubMed
Xiao, Z., Tang, C-M., Dougherty, C.M., and Bashirullah, R.. “A 20μW neural recording tag with supply-current-modulated AFE in 0.13μm CMOS.” IEEE Solid-State Circ. Conf. Dig. Tech. Papers, pp. 122–123, 2010.Google Scholar
Yeager, D., Biederman, W., Narevsky, N., Alon, E., and Rabaey, J.M.. A fully-integrated 10.5 uW miniaturized (0.125 mm2) wireless neural sensor.” Symp. VLSI Circ. Dig. Tech. Papers, pp. 72–73, Jul. 2012.Google Scholar
Schalk, G., “Can electrocorticography (ECoG) support robust and powerful brain–computer interfaces?Frontiers Neuroeng., Vol. 3, p. 9, Jan. 2010.Google ScholarPubMed
Enz, C.C., Temes, G.C.. “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization.” Proc. IEEE., Vol. 84, No. 11, pp. 1584–1614, Nov. 1996.CrossRefGoogle Scholar
Fan, Q., Sebastiano, F., Huijsing, J., and Makinwa, K.. “A 1.8uW 60 nV/rtHz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes.” IEEE J. Solid-State Circ., Vol. 46, No. 7, pp. 1534–1543, July 2011.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×