Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T12:00:04.098Z Has data issue: false hasContentIssue false

36 - Cardiac tissue regeneration in bioreactors

from Part V - Animal models and clinical applications

Published online by Cambridge University Press:  05 February 2015

Loraine L. Y. Chiu
Affiliation:
University of Toronto
Boyang Zhang
Affiliation:
University of Toronto
Yun Xiao
Affiliation:
University of Toronto
Milica Radisic
Affiliation:
University of Toronto
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Motivation for cardiac tissue regeneration in vitro

Myocardial infarction (MI) leads to the death of cardiomyocytes, and the infarct area becomes replaced by a fibroblastic scar tissue that has no contractile function. This reduces the pumping ability of the heart and the cardiac output. In addition, the scar tissue thins due to the lack of vasculature to provide oxygen and nutrients to the infarct site, thus leading to high wall stress and cardiac dilatation, which may ultimately lead to heart failure.

The adult heart has a limited regenerative capacity. The shortage of donor organs further suggests a need to develop new treatment strategies for cardiovascular diseases. Cardiac tissue regeneration can be achieved through several strategies, including (1) gene therapy, (2) cell transplantation, and (3) implantation or injection of biomaterials or engineered cardiac tissues. The goal of these cardiac tissue regeneration strategies is to repair the damaged myocardium through supporting vascularization and cell survival, in turn reducing wall thinning and preventing dilatation and heart failure. Gene therapy is not a specific topic of this chapter, in which the focus will be on bioreactors for cell expansion and engineering of cardiac tissues for cardiac tissue regeneration. Instead, we refer the reader to excellent reviews [1–3].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Holladay, C. A., O’Brien, T. and Pandit, A. 2010. Non-viral gene therapy for myocardial engineering. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2(3), 232–48.CrossRefGoogle ScholarPubMed
Nabel, E. G. 1995. Gene therapy for cardiovascular disease. Circulation, 91(2), 541–8.CrossRefGoogle ScholarPubMed
Vinge, L. E., Raake, P. W. and Koch, W. J. 2008. Gene therapy in heart failure. Circ. Res., 102(12), 1458–70.CrossRefGoogle ScholarPubMed
Laflamme, M. A. and Murry, C. E. 2011. Heart regeneration. Nature, 473(7347), 326–35.CrossRefGoogle ScholarPubMed
Bhana, B., Iyer, R. K., Chen, W. L. et al. 2010. Influence of substrate stiffness on the phenotype of heart cells. Biotechnol. Bioeng., 105(6), 1148–60.Google ScholarPubMed
Nerem, R. M. and Sambanis, A. 1995. Tissue engineering: from biology to biological substitutes. Tissue Eng., 1(1), 3–13.CrossRefGoogle ScholarPubMed
Müller-Ehmsen, J., Peterson, K. L., Kedes, L. et al. 2002. Rebuilding a damaged heart: long-term survival of transplanted neonatal rat cardiomyocytes after myocardial infarction and effect on cardiac function. Circulation, 105(14), 1720–6.CrossRefGoogle ScholarPubMed
Reinecke, H., Zhang, M., Bartosek, T. and Murry, C. E. 1999. Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation, 100(2), 193–202.CrossRefGoogle ScholarPubMed
Leor, J., Aboulafia-Etzion, S., Dar, A. et al. 2000. Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation, 102(19, Suppl. 3), III56–61.CrossRefGoogle ScholarPubMed
Zong, X., Bien, H., Chung, C. Y. et al. 2005. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials, 26(26), 5330–8.CrossRefGoogle ScholarPubMed
Li, R. K., Jia, Z. Q., Weisel, R. D. et al. 1999. Survival and function of bioengineered cardiac grafts. Circulation, 100(19, Suppl. 2), II63–9.CrossRefGoogle ScholarPubMed
Kofidis, T., Akhyari, P., Wachsmann, B. et al. 2003. Clinically established hemostatic scaffold (tissue fleece) as biomatrix in tissue- and organ-engineering research. Tissue Eng., 9(3), 517–23.CrossRefGoogle ScholarPubMed
Kehat, I., Kenyagin-Karsenti, D., Snir, M. et al. 2001. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest., 108(3), 407–14.CrossRefGoogle ScholarPubMed
Kattman, S. J., Huber, T. L. and Keller, G. M. 2006. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev. Cell, 11(5), 723–32.CrossRefGoogle ScholarPubMed
Yang, L., Soonpaa, M. H., Adler, E. D. et al. 2008. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature, 453(7194), 524–8.CrossRefGoogle ScholarPubMed
Kouskoff, V., Lacaud, G., Schwantz, S., Fehling, H. J. and Keller, G. 2005. Sequential development of hematopoietic and cardiac mesoderm during embryonic stem cell differentiation. Proc. Nat. Acad. Sci. USA, 102(37), 13170–5.CrossRefGoogle ScholarPubMed
Guo, X. M., Zhao, Y. S., Chang, H. X. et al. 2006. Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation, 113(18), 2229–37.CrossRefGoogle ScholarPubMed
Stevens, K. R., Kreutziger, K. L., Dupras, S. K. et al. 2009. Scaffold-free human cardiac tissue patch created from embryonic stem cells. Tissue Eng. Part A, 15(6), 1211–22.CrossRefGoogle ScholarPubMed
Stevens, K. R., Kreutziger, K. L., Dupras, S. K. et al. 2009. Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc. Nat. Acad. Sci. USA, 106(39), 16568–73.CrossRefGoogle ScholarPubMed
Takahashi, K. and Yamanaka, S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–76.CrossRefGoogle ScholarPubMed
Mauritz, C., Schwanke, K., Reppel, M. et al. 2008. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation, 118(5), 507–17.CrossRefGoogle ScholarPubMed
Zwi, L., Caspi, O., Arbel, G. et al. 2009. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation, 120(15), 1513–23.CrossRefGoogle ScholarPubMed
Zhang, J., Wilson, G. F., Soerens, A. G. et al. 2009. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res., 104(4), e30–41.CrossRefGoogle ScholarPubMed
Tulloch, N. L., Muskheli, V., Razumova, M. V. et al. 2011. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ. Res., 109(1), 47–59.CrossRefGoogle ScholarPubMed
Murry, C. E., Kay, M. A., Bartosek, T., Hauschka, S. D. and Schwartz, S. M. 1996. Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD. J. Clin. Invest., 98(10), 2209–17.CrossRefGoogle ScholarPubMed
Efe, J. A., Hilcove, S., Kim, J. et al. 2011. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nature Cell Biol., 13(3), 215–22.CrossRefGoogle ScholarPubMed
Bergmann, O., Bhardwaj, R. D., Bernard, S. et al. 2009. Evidence for cardiomyocyte renewal in humans. Science, 324(5923), 98–102.CrossRefGoogle ScholarPubMed
Kajstura, J., Urbanek, K., Perl, S. et al. 2010. Cardiomyogenesis in the adult human heart. Circ. Res., 107(2), 305–15.CrossRefGoogle ScholarPubMed
Ruvinov, E., Harel-Adar, T. and Cohen, S. 2011. Bioengineering the infarcted heart by applying bio-inspired materials. J. Cardiovasc. Transl. Res., 4(5), 559–74.CrossRefGoogle ScholarPubMed
Urbanek, K., Quaini, F., Tasca, G. et al. 2003. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc. Nat. Acad. Sci. USA, 100(18), 10440–5.CrossRefGoogle ScholarPubMed
Urbanek, K., Torella, D., Sheikh, F. et al. 2005. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc. Nat. Acad. Sci. USA, 102(24), 8692–7.CrossRefGoogle ScholarPubMed
Urbanek, K., Cesselli, D., Rota, M. et al. 2006. Stem cell niches in the adult mouse heart. Proc. Nat. Acad. Sci. USA, 103(24), 9226–31.CrossRefGoogle ScholarPubMed
Laugwitz, K. L., Moretti, A., Lam, J. et al. 2005. Post-natal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433(7026), 647–53.CrossRefGoogle Scholar
Segers, V. F. and Lee, R. T. 2008. Stem-cell therapy for cardiac disease. Nature, 451(7181), 937–42.CrossRefGoogle ScholarPubMed
Passier, R., van Laake, L. W. and Mummery, C. L. 2008. Stem-cell-based therapy and lessons from the heart. Nature, 453(7193), 322–9.CrossRefGoogle ScholarPubMed
Beltrami, A. P., Barlucchi, L., Torella, D. et al. 2003. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–76.CrossRefGoogle ScholarPubMed
Domian, I. J., Chiravuri, M., van der Meer, P. et al. 2009. Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science, 326(5951), 426–9.CrossRefGoogle ScholarPubMed
Messina, E., De Angelis, L., Frati, G. et al. 2004. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res., 95(9), 911–21.CrossRefGoogle ScholarPubMed
Johnston, P. V., Sasano, T., Mills, K. et al. 2009. Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation, 120(12), 1075–83, 7 pp. following 1083.CrossRefGoogle ScholarPubMed
Chimenti, I., Smith, R. R., Li, T. S. et al. 2010. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ. Res., 106(5), 971–80.CrossRefGoogle ScholarPubMed
Orlic, D., Kajstura, J., Chimenti, S. et al. 2001. Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701–5.CrossRefGoogle ScholarPubMed
Jackson, K. A., Majka, S. M., Wang, H. et al. 2001. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest., 107(11), 1395–402.CrossRefGoogle ScholarPubMed
Deb, A., Wang, S., Skelding, K. A. et al. 2003. Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients. Circulation, 107(9), 1247–9.CrossRefGoogle ScholarPubMed
Orlic, D., Kajstura, J., Chimenti, S. et al. 2003. Bone marrow stem cells regenerate infarcted myocardium. Pediatr. Transplant., 7(Suppl. 3), 86–8.CrossRefGoogle ScholarPubMed
Orlic, D., Kajstura, J., Chimenti, S. et al. 2001. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Nat. Acad. Sci. USA, 98(18), 10344–9.CrossRefGoogle Scholar
Chen, S. L., Fang, W. W., Ye, F. et al. 2004. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiol., 94(1), 92–5.CrossRefGoogle ScholarPubMed
Fraser, J. K., Wulur, I., Alfonso, Z. et al. 2006. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol., 24(4), 150–4.CrossRefGoogle ScholarPubMed
Bai, X. and Alt, E. 2010. Myocardial regeneration potential of adipose tissue-derived stem cells. Biochem. Biophys. Res. Commun., 401(3), 321–6.CrossRefGoogle ScholarPubMed
Bai, X., Yan, Y., Song, Y. H. et al. 2010. Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. Eur. Heart J., 31(4), 489–501.CrossRefGoogle ScholarPubMed
Gaebel, R., Furlani, D., Sorg, H. et al. 2011. Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration. PLoS One, 6(2), e15652.CrossRefGoogle ScholarPubMed
Vunjak-Novakovic, G., Tandon, N., Godier, A. et al. 2010. Challenges in cardiac tissue engineering. Tissue Eng. Part B Rev., 16(2), 169–87.CrossRefGoogle ScholarPubMed
Engelmayr, G. C., Cheng, M., Bettinger, C. J. et al. 2008. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Mater., 7(12), 1003–10.CrossRefGoogle ScholarPubMed
Radisic, M., Euloth, M., Yang, L. et al. 2003. High-density seeding of myocyte cells for cardiac tissue engineering. Biotechnol. Bioeng., 82(4), 403–14.CrossRefGoogle ScholarPubMed
Zimmermann, W. H., Didie, M., Wasmeier, G. H. et al. 2002. Tissue engineering of a differentiated cardiac muscle construct. Circ. Res., 90(2), 223–30.CrossRefGoogle ScholarPubMed
Dvir, T., Benishti, N., Shachar, M. and Cohen, S. et al. 2006. A novel perfusion bioreactor providing a homogenous milieu for tissue regeneration. Tissue Eng., 12(10), 2843–52.CrossRefGoogle ScholarPubMed
Kofidis, T., Lenz, A., Boublik, J. et al. 2003. Pulsatile perfusion and cardiomyocyte viability in a solid three-dimensional matrix. Biomaterials, 24(27), 5009–14.CrossRefGoogle Scholar
McDevitt, T. C., Angello, J. C., Whitney, M. L. et al. 2002. In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces. J. Biomed. Mater. Res., 60(3), 472–9.CrossRefGoogle ScholarPubMed
Carrier, R. L., Rupnick, M., Langer, R. et al. 2002. Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng., 8(2), 175–88.CrossRefGoogle ScholarPubMed
Bursac, N., Papadaki, M., Cohen, R. J. et al. 1999. Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am. J. Physiol., 277(2, Part 2), H433–44.Google Scholar
Carrier, R. L., Papadaki, M., Rupnick, M. et al. 1999. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol. Bioeng., 64(5), 580–9.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Carrier, R. L., Rupnick, M., Langer, R. et al. 2002. Effects of oxygen on engineered cardiac muscle. Biotechnol. Bioeng., 78(6), 617–25.CrossRefGoogle ScholarPubMed
Papadaki, M., Bursac, N., Langer, R. et al. 2001. Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol., 280(1), H168–78.CrossRefGoogle ScholarPubMed
Rockwood, D. N., Akins, R. E., Parrag, I. C., Woodhouse, K. A. and Rabolt, J. F. 2008. Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro. Biomaterials, 29(36), 4783–91.CrossRefGoogle ScholarPubMed
Naito, H., Melnychenko, I., Didie, M. et al. 2006. Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation, 114(1 Suppl.), I72–8.CrossRefGoogle ScholarPubMed
Radisic, M., Park, H., Chen, F. et al. 2006. Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Eng., 12(8), 2077–91.CrossRefGoogle ScholarPubMed
Radisic, M., Deen, W., Langer, R. and Vunjak-Novakovic, G. 2005. Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am. J. Physiol. Heart Circ. Physiol., 288(3), H1278–89.CrossRefGoogle ScholarPubMed
Ott, H. C., Matthiesen, T. S., Goh, S. K. et al. 2008. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nature Med., 14(2), 213–21.CrossRefGoogle Scholar
Godier-Furnémont, A. F., Martens, T. P., Koeckert, M. S. et al. 2011. Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc. Nat. Acad. Sci. USA, 108(19), 7974–9.CrossRefGoogle ScholarPubMed
Miyagi, Y., Chiu, L. L., Cimini, M. et al. 2011. Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials, 32(5), 1280–90.CrossRefGoogle ScholarPubMed
Shimizu, T., Yamato, M., Isoi, Y. et al. 2002. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res., 90(3), e40.CrossRefGoogle ScholarPubMed
Shimizu, T., Sekine, H., Yang, J. et al. 2006. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J., 20(6), 708–10.CrossRefGoogle ScholarPubMed
Baar, K., Birla, R., Bolyut, M. O. et al. 2005. Self-organization of rat cardiac cells into contractile 3-D cardiac tissue. FASEB J., 19(2), 275–7.CrossRefGoogle ScholarPubMed
Rodrigues, C. A., Fernandes, T. G., Diogo, M. M., da Silva, C. L. and Cabral, J. M. 2011. Stem cell cultivation in bioreactors. Biotechnol. Adv., 29(6), 815–29.CrossRefGoogle ScholarPubMed
Ulloa-Montoya, F., Verfaillie, C. M. and Hu, W. S. 2005. Culture systems for pluripotent stem cells. J. Biosci. Bioeng., 100(1), 12–27.CrossRefGoogle ScholarPubMed
Smith, R. R., Barile, L., Cho, H. C. et al. 2007. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 115(7), 896–908.CrossRefGoogle ScholarPubMed
Gerecht-Nir, S., Cohen, S. and Itskovitz-Eldor, J. 2004. Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol. Bioeng., 86(5), 493–502.CrossRefGoogle Scholar
Subramanian, K., Park, Y., Verfaille, C. M. and Hu, W. S. 2011. Scalable expansion of multipotent adult progenitor cells as three-dimensional cell aggregates. Biotechnol. Bioeng., 108(2), 364–75.CrossRefGoogle ScholarPubMed
Serra, M., Brito, C., Sousa, M. F. et al. 2010. Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. J. Biotechnol., 148(4), 208–15.CrossRefGoogle ScholarPubMed
Dang, S. M., Gerecht-Nir, S., Chen, J., Itskovitz-Eldor, J. and Zandstra, P. W. 2004. Controlled, scalable embryonic stem cell differentiation culture. Stem Cells, 22(3), 275–82.CrossRefGoogle ScholarPubMed
Zandstra, P. W., Bauwens, C., Yin, T. et al. 2003. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng., 9(4), 767–78.CrossRefGoogle ScholarPubMed
Bauwens, C., Yin, T., Dang, S., Peerani, R. and Zandstra, P. W. 2005. Development of a perfusion fed bioreactor for embryonic stem cell-derived cardiomyocyte generation: oxygen-mediated enhancement of cardiomyocyte output. Biotechnol. Bioeng., 90(4), 452–61.CrossRefGoogle ScholarPubMed
Niebruegge, S., Bauwens, C. L., Peerani, R. et al. 2009. Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor. Biotechnol. Bioeng., 102(2), 493–507.CrossRefGoogle Scholar
Niebruegge, S., Nehring, A., Bär, H. et al. 2008. Cardiomyocyte production in mass suspension culture: embryonic stem cells as a source for great amounts of functional cardiomyocytes. Tissue Eng. Part A, 14(10), 1591–601.CrossRefGoogle ScholarPubMed
Barron, V., Lyons, E., Stevenson-Cox, C., McHugh, P. E. and Pandit, A. 2003. Bioreactors for cardiovascular cell and tissue growth: a review. Ann. Biomed. Eng., 31(9), 1017–30.CrossRefGoogle ScholarPubMed
Chen, H. C. and Hu, Y. C. 2006. Bioreactors for tissue engineering. Biotechnol. Lett., 28(18), 1415–23.CrossRefGoogle ScholarPubMed
Eschenhagen, T. and Zimmermann, W. H. 2005. Engineering myocardial tissue. Circ. Res., 97(12), 1220–31.CrossRefGoogle ScholarPubMed
Radisic, M., Marsano, A., Maidhof, R. et al. 2008. Cardiac tissue engineering using perfusion bioreactor systems. Nature Protoc., 3(4), 719–38.CrossRefGoogle ScholarPubMed
Brown, M. A., Iyer, R. K. and Radisic, M. 2008. Pulsatile perfusion bioreactor for cardiac tissue engineering. Biotechnol. Prog., 24(4), 907–20.CrossRefGoogle ScholarPubMed
Martin, I., Wendt, D. and Heberer, M. 2004. The role of bioreactors in tissue engineering. Trends Biotechnol., 22(2), 80–6.CrossRefGoogle ScholarPubMed
Pörtner, R., Nagel-Heyer, S., Goepfert, C., Adamietz, P. and Meenen, N. M. 2005. Bioreactor design for tissue engineering. J. Biosci. Bioeng., 100(3), 235–45.CrossRefGoogle ScholarPubMed
Chamuleau, S. A., van Belle, E. and Doevendans, P. A. 2009. Enhancing cardiac stem cell differentiation into cardiomyocytes. Cardiovasc. Res., 82(3), 385–7.CrossRefGoogle ScholarPubMed
Maidhof, R., Marsano, A., Lee, A. J. and Vunjak-Novakovic, G. 2010. Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering. Biotechnol. Prog., 26(2), 565–72.Google ScholarPubMed
Iyer, R. K., Chiu, L. L., Reis, L. A. and Radisic, M. 2011. Engineered cardiac tissues. Curr. Opin. Biotechnol., 22(5), 706–14.CrossRefGoogle ScholarPubMed
Chiu, L. L., Radisic, M. and Vunjak-Novakovic, G. 2010. Bioactive scaffolds for engineering vascularized cardiac tissues. Macromolec. Biosci, 10(11), 1286–301.CrossRefGoogle ScholarPubMed
Grayson, W. L., Martens, T. P., Eng, G. M., Radisic, M. and Vunjak-Novakovic, G. 2009. Biomimetic approach to tissue engineering. Semin. Cell Dev. Biol., 20(6), 665–73.CrossRefGoogle ScholarPubMed
Hecker, L. and Birla, R. K. 2007. Engineering the heart piece by piece: state of the art in cardiac tissue engineering. Regen. Med., 2(2), 125–44.CrossRefGoogle ScholarPubMed
Radisic, M., Park, H., Shing, H. et al. 2004. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Nat. Acad. Sci. USA, 101(52), 18129–34.CrossRefGoogle ScholarPubMed
Tandon, N., Cannizzaro, C., Chao, P. H. et al. 2009. Electrical stimulation systems for cardiac tissue engineering. Nature Protoc., 4(2), 155–73.CrossRefGoogle ScholarPubMed
Gaetani, R., Ledda, M., Barile, L. et al. 2009. Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovasc. Res., 82(3), 411–20.CrossRefGoogle ScholarPubMed
Freed, L. E., Guilak, F., Guo, X. E. et al. 2006. Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling. Tissue Eng., 12(12), 3285–305.CrossRefGoogle ScholarPubMed
Bursac, N., Papadaki, M., White, J. A. et al. 2003. Cultivation in rotating bioreactors promotes maintenance of cardiac myocyte electrophysiology and molecular properties. Tissue Eng., 9(6), 1243–53.CrossRefGoogle ScholarPubMed
Radisic, M., Papadaki, M., White, J. A. et al. 2004. Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol. Heart Circ. Physiol., 286(2), H507–16.CrossRefGoogle ScholarPubMed
Morsi, Y. S., Yang, W. W., Owida, A. and Wong, C. S. 2007. Development of a novel pulsatile bioreactor for tissue culture. J. Artif. Organs, 10(2), 109–14.CrossRefGoogle ScholarPubMed
Zimmermann, W. H., Melnychenko, I., Wasmeier, G. et al. 2006. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nature Med., 12(4), 452–8.CrossRefGoogle ScholarPubMed
Akhyari, P., Fedak, P. W., Weisel, R. D. et al. 2002. Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation, 106(12, Suppl. 1), I137–42.Google ScholarPubMed
Chiu, L. L., Iyer, R. K., King, J. P. and Radisic, M. 2011. Biphasic electrical field stimulation AIDS in tissue engineering of multicell-type cardiac organoids. Tissue Eng. Part A, 17(11–12), 1465–77.CrossRefGoogle ScholarPubMed
Tandon, N., Marsano, A., Maidhof, R. et al. 2011. Optimization of electrical stimulation parameters for cardiac tissue engineering. J. Tissue Eng. Regen. Med., 5(6), e115–25.CrossRefGoogle ScholarPubMed
Barash, Y., Dvir, T., Tandeitnik, P. et al. 2010. Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering. Tissue Eng. Part C Methods, 16(6), 1417–26.CrossRefGoogle ScholarPubMed
Au, H. T., Cui, B., Chu, Z. E., Veres, T. and Radisic, M. 2009. Cell culture chips for simultaneous application of topographical and electrical cues enhance phenotype of cardiomyocytes. Lab Chip, 9(4), 564–75.Google Scholar
Kensah, G., Gruh, I., Viering, J. et al. 2011. A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation. Tissue Eng. Part C Methods, 17(4), 463–73.CrossRefGoogle ScholarPubMed
Figallo, E., Cannizzaro, C., Gerecht, S. et al. 2007. Micro-bioreactor array for controlling cellular microenvironments. Lab Chip, 7(6), 710–19.CrossRefGoogle ScholarPubMed
Song, H., Yoon, C., Kattman, S. J. et al. 2010. Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. Proc. Nat. Acad. Sci. USA, 107(8), 3329–34.CrossRefGoogle ScholarPubMed
Birla, R. K., Dhawan, V., Dow, D. et al. 2009. Cardiac cells implanted into a cylindrical, vascularized chamber in vivo: pressure generation and morphology. Biotechnol. Lett., 31(2), 191–201.CrossRefGoogle ScholarPubMed
Morritt, A. N., Bortolotto, S. K., Dilley, R. J. et al. 2007. Cardiac tissue engineering in an in vivo vascularized chamber. Circulation, 115(3), 353–60.CrossRefGoogle Scholar
Sakai, T., Li, R. K., Weisel, R. D. et al. 1999. Fetal cell transplantation: a comparison of three cell types. J. Thorac. Cardiovasc. Surg., 118(4), 715–24.CrossRefGoogle ScholarPubMed
Chiu, R. C., Zibaitis, A. and Kao, R. L. 1995. Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann. Thorac. Surg., 60(1), 12–18.CrossRefGoogle ScholarPubMed
Murry, C. E., Wiseman, R. W., Schwartz, S. M. and Hauschka, S. D. 1996. Skeletal myoblast transplantation for repair of myocardial necrosis. J. Clin. Invest., 98(11), 2512–23.CrossRefGoogle ScholarPubMed
Taylor, D. A., Atkins, B. Z., Hungspreugs, P. et al. 1998. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nature Med., 4(8), 929–33.CrossRefGoogle ScholarPubMed
Scorsin, M., Hagège, A., Vilquin, J. T. et al. 2000. Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J. Thorac. Cardiovasc. Surg., 119(6), 1169–75.CrossRefGoogle ScholarPubMed
Wu, K. H., Han, Z. C., Mo, X. M. and Zhou, B. 2011. Cell delivery in cardiac regenerative therapy. Ageing Res. Rev., 11(1), 32–40.CrossRefGoogle ScholarPubMed
Menasché, P., Hagège, A. A., Scorsin, M. et al. 2001. Myoblast transplantation for heart failure. Lancet, 357(9252), 279–80.CrossRefGoogle ScholarPubMed
Menasché, P., Hagège, A. A., Vilquin, J. T. et al. 2003. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J. Am. Coll. Cardiol., 41(7), 1078–83.CrossRefGoogle ScholarPubMed
Strauer, B. E., Brehm, M., Zeus, T. et al. 2002. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106(15), 1913–18.CrossRefGoogle ScholarPubMed
Wollert, K. C., Meyer, G. P., Lotz, J. et al. 2004. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet, 364(9429), 141–8.CrossRefGoogle ScholarPubMed
Schächinger, V., Erbs, S., Elsässer, A. et al. 2006. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N. Engl. J. Med., 355(12), 1210–21.CrossRefGoogle ScholarPubMed
Strauer, B. E., Brehm, M., Zeus, T. et al. 2005. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J. Am. Coll. Cardiol., 46(9), 1651–8.CrossRefGoogle ScholarPubMed
Hare, J. M., Traverse, J. H., Henry, T. D. et al. 2009. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J. Am. Coll. Cardiol., 54(24), 2277–86.CrossRefGoogle ScholarPubMed
Flynn, A. and O’Brien, T. 2011. Stem cell therapy for cardiac disease. Expert Opin. Biol. Ther., 11(2), 177–87.CrossRefGoogle ScholarPubMed
Dawn, B., Stein, A. B., Urbanek, K. et al. 2005. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc. Nat. Acad. Sci. USA, 102(10), 3766–71.CrossRefGoogle ScholarPubMed
Meyer, G. P., Wollert, K. C., Lotz, J. et al. 2006. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation, 113(10), 1287–94.CrossRefGoogle ScholarPubMed
Assmus, B., Schächinger, V., Teupe, C. et al. 2002. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation, 106(24), 3009–17.CrossRefGoogle Scholar
Perin, E. C. and Willerson, J. T. 2011. CD34+ autologous human stem cells in treating refractory angina. Circ. Res., 109(4), 351–2.CrossRefGoogle ScholarPubMed
Assmus, B., Fischer-Rasokat, U., Honold, J. et al. 2007. Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD Registry. Circ. Res., 100(8), 1234–41.CrossRefGoogle ScholarPubMed
Perin, E. C., Silva, G. V., Henry, T. D. et al. 2011. A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF). Am. Heart J., 161(6), 1078–87.CrossRefGoogle Scholar
Kang, H. J., Lee, H. Y., Na, S. H. et al. 2006. Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: the MAGIC Cell-3-DES randomized, controlled trial. Circulation, 114(1 Suppl.), I145–51.CrossRefGoogle ScholarPubMed
Tse, H. F., Thambar, S., Kwong, Y. L. et al. 2007. Prospective randomized trial of direct endomyocardial implantation of bone marrow cells for treatment of severe coronary artery diseases (PROTECT-CAD trial). Eur. Heart J., 28(24), 2998–3005.CrossRefGoogle Scholar
Dib, N., Dinsmore, J., Labadibi, Z. et al. 2009. One-year follow-up of feasibility and safety of the first U.S., randomized, controlled study using 3-dimensional guided catheter-based delivery of autologous skeletal myoblasts for ischemic cardiomyopathy (CAuSMIC study). JACC Cardiovasc. Interv., 2(1), 9–16.CrossRefGoogle Scholar
Shimizu, T., Sekine, H., Isoi, Y. et al. 2006. Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng., 12(3), 499–507.CrossRefGoogle ScholarPubMed
Sekine, H., Shimizu, T., Hobo, K. et al. 2008. Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation, 118(14 Suppl.), S145–52.CrossRefGoogle ScholarPubMed
Sasagawa, T., Shimizu, T., Sekiya, S. et al. 2010. Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials, 31(7), 1646–54.CrossRefGoogle ScholarPubMed
Asakawa, N., Shimizu, T., Tsuda, Y. et al. 2010. Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering. Biomaterials, 31(14), 3903–9.CrossRefGoogle ScholarPubMed
Itabashi, Y., Miyoshi, S., Kawaguchi, H. et al. 2005. A new method for manufacturing cardiac cell sheets using fibrin-coated dishes and its electrophysiological studies by optical mapping. Artif. Organs, 29(2), 95–103.CrossRefGoogle ScholarPubMed
Villet, O. M., Siltanen, A., Pätilä, T. et al. 2011. Advances in cell transplantation therapy for diseased myocardium. Stem Cells Int., 679171.Google ScholarPubMed
Memon, I. A., Sawa, Y., Fukushima, N. et al. 2005. Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. J. Thorac. Cardiovasc. Surg., 130(5), 1333–41.CrossRefGoogle ScholarPubMed
Siltanen, A., Kitabayashi, K., Pätilä, T. et al. 2011. Bcl-2 improves myoblast sheet therapy in rat chronic heart failure. Tissue Eng. Part A, 17(1–2), 115–25.CrossRefGoogle ScholarPubMed
Hoashi, T., Matsumiya, G., Miyagawa, S. et al. 2009. Skeletal myoblast sheet transplantation improves the diastolic function of a pressure-overloaded right heart. J. Thorac. Cardiovasc. Surg., 138(2), 460–7.CrossRefGoogle ScholarPubMed
Miyagawa, S., Saito, A., Sakaguchi, T. et al. 2010. Impaired myocardium regeneration with skeletal cell sheets–a preclinical trial for tissue-engineered regeneration therapy. Transplantation, 90(4), 364–72.CrossRefGoogle Scholar
Sawa, Y. 2010. Myocardial regeneration for heart failure [in Japanese]. Nippon Rinsho, 68(4), 719–25.Google Scholar
Miyahara, Y., Nagaya, N., Kataoka, M. et al. 2006. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Med., 12(4), 459–65.CrossRefGoogle ScholarPubMed
Okura, H., Matsuyama, A., Lee, C. M. et al. 2010. Cardiomyoblast-like cells differentiated from human adipose tissue-derived mesenchymal stem cells improve left ventricular dysfunction and survival in a rat myocardial infarction model. Tissue Eng. Part C Methods, 16(3), 417–25.CrossRefGoogle Scholar
Zakharova, L., Mastroeni, D., Mutlu, N. et al. 2010. Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function. Cardiovasc. Res., 87(1), 40–9.CrossRefGoogle ScholarPubMed
Haraguchi, Y., Shimizu, T., Yamato, M. et al. 2006. Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation. Biomaterials, 27(27), 4765–74.CrossRefGoogle ScholarPubMed
Sekine, H., Shimizu, T., Yang, J., Kobayashi, E. and Okano, T. 2006. Pulsatile myocardial tubes fabricated with cell sheet engineering. Circulation, 114(1 Suppl.), I87–93.CrossRefGoogle ScholarPubMed
Miyagawa, S., Sawa, Y., Sakakida, S. et al. 2005. Tissue cardiomyoplasty using bioengineered contractile cardiomyocyte sheets to repair damaged myocardium: their integration with recipient myocardium. Transplantation, 80(11), 1586–95.CrossRefGoogle ScholarPubMed
Zimmermann, W. H., Didié, M., Wasmeier, G. H. et al. 2002. Cardiac grafting of engineered heart tissue in syngenic rats. Circulation, 106(12, Suppl. 1), I151–7.Google ScholarPubMed
Simpson, D., Liu, H., Fan, T. H., Nerem, R. and Dudley, S. C. 2007. A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells, 25(9), 2350–7.CrossRefGoogle ScholarPubMed
Kellar, R. S., Landeen, L. K., Shepherd, B. R. et al. 2001. Scaffold-based three-dimensional human fibroblast culture provides a structural matrix that supports angiogenesis in infarcted heart tissue. Circulation, 104(17), 2063–8.CrossRefGoogle ScholarPubMed
Fukuhara, S., Tomita, S., Nakatani, T. et al. 2005. Bone marrow cell-seeded biodegradable polymeric scaffold enhances angiogenesis and improves function of the infarcted heart. Circ. J., 69(7), 850–7.CrossRefGoogle ScholarPubMed
Miyagawa, S., Roth, M., Saito, A., Sawa, Y. and Kostin, S. 2011. Tissue-engineered cardiac constructs for cardiac repair. Ann. Thorac. Surg., 91(1), 320–9.CrossRefGoogle ScholarPubMed
Jawad, H., Ali, N. N., Lyon, A. R., et al. 2008. Myocardial tissue engineering. Br. Med. Bull., 87, 31–47.CrossRefGoogle ScholarPubMed
Leor, J., Tuvia, S., Guetta, V. et al. 2009. Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine. J. Am. Coll. Cardiol., 54(11), 1014–23.CrossRefGoogle ScholarPubMed
Ozawa, T., Mickle, D. A., Weisel, R. D. et al. 2002. Optimal biomaterial for creation of autologous cardiac grafts. Circulation, 106(12, Suppl. 1), I176–82.Google ScholarPubMed
McDevitt, T. C., Woodhouse, K. A., Hauschka, S. D., Murry, C. E. and Stayton, P. S. 2003. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J. Biomed. Mater. Res. A, 66(3), 586–95.CrossRefGoogle ScholarPubMed
Kofidis, T., Akhyari, P., Boublik, J. et al. 2002. In vitro engineering of heart muscle: artificial myocardial tissue. J. Thorac. Cardiovasc. Surg., 124(1), 63–9.CrossRefGoogle ScholarPubMed
Chachques, J. C., Trainini, J. C., Lago, N. et al. 2008. Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM trial): clinical feasibility study. Ann. Thorac. Surg., 85(3), 901–8.CrossRefGoogle ScholarPubMed
Matsubayashi, K., Fedak, P. W., Mickle, D. A. et al. 2003. Improved left ventricular aneurysm repair with bioengineered vascular smooth muscle grafts. Circulation, 108(Suppl. 1), II219–25.CrossRefGoogle ScholarPubMed
Siepe, M., Giraud, M. N., Pavlovic, M. et al. 2006. Myoblast-seeded biodegradable scaffolds to prevent post-myocardial infarction evolution toward heart failure. J. Thorac. Cardiovasc. Surg., 132(1), 124–31.CrossRefGoogle ScholarPubMed
Weymann, A., Loganathan, S., Takahashi, H. et al. 2011. Development and evaluation of a perfusion decellularization porcine heart model – generation of 3-dimensional myocardial neoscaffolds. Circ. J., 75(4), 852–60.CrossRefGoogle ScholarPubMed
Wainwright, J. M., Czajka, C. A., Patel, U. B. et al. 2010. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng. Part C Methods, 16(3), 525–32.CrossRefGoogle ScholarPubMed
Taylor, D. A. 2009. From stem cells and cadaveric matrix to engineered organs. Curr. Opin. Biotechnol., 20(5), 598–605.CrossRefGoogle ScholarPubMed
Naughton, G. K. 2002. From lab bench to market: critical issues in tissue engineering. Ann. NY Acad. Sci., 961, 372–85.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×