Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T21:02:23.474Z Has data issue: false hasContentIssue false

34 - In-vitro blood vessel regeneration

from Part V - Animal models and clinical applications

Published online by Cambridge University Press:  05 February 2015

Sashka Dimitrievska
Affiliation:
Yale University
Laura E. Niklason
Affiliation:
Yale University
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

In the USA, 40% of all deaths are caused by cardiovascular disease. More than half of these incidents are a direct result of coronary artery disease [1]. In an effort to decrease the mortality from coronary heart disease, more than 500,000 coronary artery bypass procedures are performed annually [1]. The coronary artery lumen’s inner diameter (ID) is about 4 mm at most, requiring a similarly small-diameter conduit to bypass the blocked artery. The most successful vascular conduit is the patient’s own blood vessel, most commonly the greater saphenous vein in the leg or the internal mammary artery. However, autologous vessels are often unavailable to patients in need of a vascular graft replacement, due to prior harvesting or disease-associated vascular damage.

In search of an alternative vascular replacement, at the beginning of the twentieth century allografts were developed as the first valid vascular replacement. However allografts’ limited long-term success due to aneurysm, calcification, and thrombosis, in addition to low availability and concerns relating to infectious diseases, have hindered their clinical acceptance [2, 3]. The allografts’ shortcomings in small-diameter vascular applications led to the development of synthetic substitutes in the 1950s. Despite the polymers’ thrombogenic surface and lack of compliance, they demonstrated acceptable long-term performance in large-diameter vessels (ID > 6 mm). However, polymeric grafts are inadequate when used in medium- or small-diameter applications.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Roger, V. L., Go, A. S., Lloyd-Jones, D. M. et al. 2011. Heart disease and stroke statistics – 2011 update: a report from the American Heart Association. Circulation, 123, e18–209.CrossRefGoogle ScholarPubMed
Farber, A., Major, K., Wagner, W. H. et al. 2003. Cryopreserved saphenous vein allografts in infrainguinal revascularization: analysis of 240 grafts. J. Vasc. Surg., 38, 15–21.CrossRefGoogle ScholarPubMed
Dahl, S. L., Kypson, A. P., Lawson, J. H. et al. 2011. Readily available tissue-engineered vascular grafts. Sci. Transl. Med., 3, 68–9.CrossRefGoogle ScholarPubMed
Niklason, L. E., Gao, J., Abbott, W. M. et al. 1999. Functional arteries grown in vitro. Science, 284, 489–93.CrossRefGoogle ScholarPubMed
Niklason, L. E., Abbott, W., Gao, J. et al. 2001. Morphologic and mechanical characteristics of engineered bovine arteries. J. Vasc. Surg., 33, 628–38.CrossRefGoogle ScholarPubMed
Mooney, D. J., Mazzoni, C. L., Breuer, C. et al. 1996. Stabilized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials, 17, 115–24.CrossRefGoogle ScholarPubMed
Miller, D. C., Thapa, A., Haberstroh, K. M. and Webster, T. J. 2004. Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features. Biomaterials, 25, 53–61.CrossRefGoogle ScholarPubMed
Bilgen, B., Uygun, K., Bueno, E. M., Sucosky, P. and Barabino, G. A. 2009. Tissue growth modeling in a wavy-walled bioreactor. Tissue Eng. Part A, 15, 761–71.CrossRefGoogle Scholar
Weinberg, C. B. and Bell, E. 1986. A blood vessel model constructed from collagen and cultured vascular cells. Science, 231, 397–400.CrossRefGoogle ScholarPubMed
Peck, M., Gebhart, D., Dusserre, N., McAllister, T. N. and L’Heureux, N. 2012. The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs, 195, 144–58.CrossRefGoogle ScholarPubMed
Orban, J. M., Wilson, L. B., Kofroth, J. A. et al. 2004. Crosslinking of collagen gels by transglutaminase. J. Biomed. Mater. Res. A, 68, 756–62.CrossRefGoogle ScholarPubMed
Hirai, J. and Matsuda, T. 1996. Venous reconstruction using hybrid vascular tissue composed of vascular cells and collagen: tissue regeneration process. Cell Transplant., 5, 93–105.CrossRefGoogle ScholarPubMed
Haisch, A., Loch, A., David, J. et al. 2000. Preparation of a pure autologous biodegradable fibrin matrix for tissue engineering. Med. Biol. Eng. Comput., 38, 686–9.CrossRefGoogle ScholarPubMed
Grassl, E. D., Oegema, T. R. and Tranquillo, R. T. 2003. A fibrin-based arterial media equivalent. J. Biomed. Mater. Res. A, 66, 550–61.CrossRefGoogle ScholarPubMed
Tschoeke, B., Flanagan, T. C., Koch, S. et al. 2009. Tissue-engineered small-caliber vascular graft based on a novel biodegradable composite fibrin–polylactide scaffold. Tissue Eng. Part A, 15, 1909–18.CrossRefGoogle ScholarPubMed
Syedain, Z. H., Meier, L. A., Bjork, J. W., Lee, A. and Tranquillo, R. T. 2011. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow–stretch bioreactor with noninvasive strength monitoring. Biomaterials, 32, 714–22.CrossRefGoogle ScholarPubMed
Berglund, J. D., Nerem, R. M. and Sambanis, A. 2004. Incorporation of intact elastin scaffolds in tissue-engineered collagen-based vascular grafts. Tissue Eng., 10, 1526–35.CrossRefGoogle ScholarPubMed
L’Heureux, N., Paquet, S., Labbe, R., Germain, L. and Auger, F. A. 1998. A completely biological tissue-engineered human blood vessel. FASEB J., 12, 47–56.CrossRefGoogle ScholarPubMed
McAllister, T. N., Maruszewski, M., Garrido, S. A. et al. 2009. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet, 373, 1440–6.CrossRefGoogle ScholarPubMed
Hodde, J. P., Record, R. D., Tullius, R. S. and Badylak, S. F. 2002. Retention of endothelial cell adherence to porcine-derived extracellular matrix after disinfection and sterilization. Tissue Eng., 8, 225–34.CrossRefGoogle ScholarPubMed
Hiles, M. C., Badylak, S. F., Lantz, G. C. et al. 1995. Mechanical properties of xenogeneic small-intestinal submucosa when used as an aortic graft in the dog. J. Biomed. Mater. Res., 29, 883–91.CrossRefGoogle ScholarPubMed
Herring, M., Gardner, A. and Glover, J. 1978. A single-staged technique for seeding vascular grafts with autogenous endothelium. Surgery, 84, 498–504.Google ScholarPubMed
Rosenman, J. E., Kempczinski, R. F., Pearce, W. H. and Silberstein, E. B. 1985. Kinetics of endothelial cell seeding. J. Vasc. Surg., 2, 778–84.CrossRefGoogle ScholarPubMed
Teebken, O. E., Bader, A., Steinhoff, G. and Haverich, A. 2000. Tissue engineering of vascular grafts: human cell seeding of decellularised porcine matrix. Eur. J. Vasc. Endovasc. Surg., 19, 381–6.CrossRefGoogle ScholarPubMed
Amiel, G. E., Komura, M. and Shapira, O. et al. 2006. Engineering of blood vessels from acellular collagen matrices coated with human endothelial cells. Tissue Eng., 12, 2355–65.CrossRefGoogle ScholarPubMed
McFetridge, P. S., Daniel, J. W., Bodamyali, T., Horrocks, M. and Chaudhuri, J. B. 2004. Preparation of porcine carotid arteries for vascular tissue engineering applications. J. Biomed. Mater. Res. A, 70, 224–34.CrossRefGoogle ScholarPubMed
Quint, C., Kondo, Y., Manson, R. J. et al. 2011. Decellularized tissue-engineered blood vessel as an arterial conduit. Proc. Nat. Acad. Sci. USA, 108, 9214–9.CrossRefGoogle ScholarPubMed
Lantz, G. C., Badylak, S. F., Coffey, A. C., Geddes, L. A. and Blevins, W. E. 1990. Small intestinal submucosa as a small-diameter arterial graft in the dog. J. Invest. Surg., 3, 217–27.CrossRefGoogle ScholarPubMed
Sandusky, G. E., Badylak, S. F., Morff, R. J., Johnson, W. D. and Lantz, G. 1992. Histologic findings after in vivo placement of small intestine submucosal vascular grafts and saphenous vein grafts in the carotid artery in dogs. Am. J. Pathol., 140, 317–24.Google ScholarPubMed
Badylak, S. F., Lantz, G. C., Coffey, A. and Geddes, L. A. 1989. Small intestinal submucosa as a large diameter vascular graft in the dog. J. Surg. Res., 47, 74–80.CrossRefGoogle ScholarPubMed
Teebken, O. E. and Haverich, A. 2002. Tissue engineering of small diameter vascular grafts. Eur. J. Vasc. Endovasc. Surg., 23, 475–85.CrossRefGoogle ScholarPubMed
Derham, C., Yow, H., Ingram, J. et al. 2008. Tissue engineering small-diameter vascular grafts: preparation of a biocompatible porcine ureteric scaffold. Tissue Eng. Part A, 14, 1871–82.CrossRefGoogle ScholarPubMed
Stapleton, T. W., Ingram, J., Katta, J. et al. 2008. Development and characterization of an acellular porcine medial meniscus for use in tissue engineering. Tissue Eng. Part A, 14, 505–18.CrossRefGoogle ScholarPubMed
Narita, Y., Kagami, H., Matsunuma, H. et al. 2008. Decellularized ureter for tissue-engineered small-caliber vascular graft. J. Artif. Organs, 11, 91–9.CrossRefGoogle ScholarPubMed
Kaushal, S., Amiel, G. E., Guleserian, K. J. et al. 2001. Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nature Med., 7, 1035–40.CrossRefGoogle ScholarPubMed
Dohmen, P. M., Lembcke, A., Hotz, H., Kivelitz, D. and Konertz, W. F. 2002. Ross operation with a tissue-engineered heart valve. Ann. Thorac. Surg., 74, 1438–42.CrossRefGoogle ScholarPubMed
Walles, T., Puschmann, C., Haverich, A. and Mertsching, H. 2003. Acellular scaffold implantation – no alternative to tissue engineering. Int. J. Artif. Organs, 26, 225–34.CrossRefGoogle ScholarPubMed
Simionescu, D. T., Lu, Q., Song, Y. et al. 2006. Biocompatibility and remodeling potential of pure arterial elastin and collagen scaffolds. Biomaterials, 27, 702–13.CrossRefGoogle ScholarPubMed
Dohmen, P. M., Lembcke, A., Holinski, S. et al. 2007. Mid-term clinical results using a tissue-engineered pulmonary valve to reconstruct the right ventricular outflow tract during the Ross procedure. Ann. Thorac. Surg., 84, 729–36.CrossRefGoogle ScholarPubMed
Simon, P., Kasimir, M. T., Seebacher, G. et al. 2003. Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur. J. Cardiothorac. Surg., 23, 1002–6; discussion 6.CrossRefGoogle ScholarPubMed
Baumann, B. C., Forte, P., Hawley, R. J. et al. 2004. Lack of galactose-α-1,3-galactose expression on porcine endothelial cells prevents complement-induced lysis but not direct xenogeneic NK cytotoxicity. J. Immunol., 172, 6460–7.CrossRefGoogle Scholar
Ruffer, A., Purbojo, A., Cicha, I. et al. 2010. Early failure of xenogenous de-cellularised pulmonary valve conduits – a word of caution! Eur. J. Cardiothorac. Surg., 38, 78–85.CrossRefGoogle ScholarPubMed
Johnson, D. J., Robson, P., Hew, Y. and Keeley, F. W. 1995. Decreased elastin synthesis in normal development and in long-term aortic organ and cell cultures is related to rapid and selective destabilization of mRNA for elastin. Circ. Res., 77, 1107–13.CrossRefGoogle ScholarPubMed
McMahon, M. P., Faris, B., Wolfe, B. L. et al. 1985. Aging effects on the elastin composition in the extracellular matrix of cultured rat aortic smooth muscle cells. In Vitro Cell Dev. Biol., 21, 674–80.CrossRefGoogle ScholarPubMed
Davidson, J. M., LuValle, P. A., Zoia, O., Quaglino, D. and Giro, M. 1997. Ascorbate differentially regulates elastin and collagen biosynthesis in vascular smooth muscle cells and skin fibroblasts by pretranslational mechanisms. J. Biol. Chem., 272, 345–52.CrossRefGoogle ScholarPubMed
Sundaram, S. and Niklason, L. E. 2012. Smooth muscle and other cell sources for human blood vessel engineering. Cells Tissues Organs, 195, 15–25.CrossRefGoogle ScholarPubMed
Poh, M., Boyer, M., Solan, A. et al. 2005. Blood vessels engineered from human cells. Lancet, 365, 2122–4.CrossRefGoogle ScholarPubMed
McKee, J. A., Banik, S. S., Boyer, M. J. et al. 2003. Human arteries engineered in vitro. EMBO Rep., 4, 633–8.CrossRefGoogle ScholarPubMed
Bodnar, A. G., Ouellette, M., Frolkis, M. et al. 1998. Extension of life-span by introduction of telomerase into normal human cells. Science, 279, 349–52.CrossRefGoogle ScholarPubMed
Syedain, Z. H., Weinberg, J. S. and Tranquillo, R. T. 2008. Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue. Proc. Nat. Acad. Sci. USA, 105, 6537–42.CrossRefGoogle ScholarPubMed
Hoerstrup, S. P., Zund, G., Sodian, R. et al. 2001. Tissue engineering of small caliber vascular grafts. Eur. J. Cardiothorac. Surg., 20, 164–9.CrossRefGoogle ScholarPubMed
Braddon, L. G., Karoyli, D., Harrison, D. G. and Nerem, R. M. 2002. Maintenance of a functional endothelial cell monolayer on a fibroblast/polymer substrate under physiologically relevant shear stress conditions. Tissue Eng., 8, 695–708.CrossRefGoogle ScholarPubMed
Niklason, L. E. 1999. Techview: medical technology. Replacement arteries made to order. Science, 286, 1493–4.CrossRefGoogle ScholarPubMed
Sundaram, S. and Niklason, L. E. 2012. Smooth muscle and other cell sources for human blood vessel engineering. Cells Tissues Organs, 195(1–2), 15–25.CrossRefGoogle ScholarPubMed
Cheung, C. and Sinha, S. 2011. Human embryonic stem cell-derived vascular smooth muscle cells in therapeutic neovascularisation. J. Molec. Cell Cardiol., 51, 651–64.CrossRefGoogle ScholarPubMed
Hashi, C. K., Zhu, Y., Yang, G. Y. et al. 2007. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc. Nat. Acad. Sci. USA, 104, 11915–20.CrossRefGoogle ScholarPubMed
Cohnheim, J. F. 1867. Über Entzündung und Eiterung. Virchows Arch. Path. Anat. Physiol. Klin. Med., 40, 1–79.CrossRefGoogle Scholar
Minguell, J. J., Erices, A. and Conget, P. 2001. Mesenchymal stem cells. Exp. Biol. Med. (Maywood), 226, 507–20.CrossRefGoogle ScholarPubMed
Galmiche, M. C., Koteliansky, V. E., Briere, J., Herve, P. and Charbord, P. 1993. Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood, 82, 66–76.Google ScholarPubMed
Gong, Z., Calkins, G., Cheng, E. C., Krause, D. and Niklason, L. E. 2009. Influence of culture medium on smooth muscle cell differentiation from human bone marrow-derived mesenchymal stem cells. Tissue Eng. Part A, 15, 319–30.CrossRefGoogle ScholarPubMed
LeDuc, P., Ostuni, E., Whitesides, G. and Ingber, D. 2002. Use of micropatterned adhesive surfaces for control of cell behavior. Methods Cell Biol., 69, 385–401.CrossRefGoogle ScholarPubMed
Hamilton, D. W., Maul, T. M. and Vorp, D. A. 2004. Characterization of the response of bone marrow-derived progenitor cells to cyclic strain: implications for vascular tissue-engineering applications. Tissue Eng., 10, 361–9.CrossRefGoogle ScholarPubMed
Kurpinski, K., Chu, J., Hashi, C. and Li, S. 2006. Anisotropic mechanosensing by mesenchymal stem cells. Proc. Nat. Acad. Sci. USA, 103, 16095–100.CrossRefGoogle ScholarPubMed
Gong, Z. and Niklason, L. E. 2008. Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J., 22, 1635–48.CrossRefGoogle Scholar
Liu, J. Y., Swartz, D. D., Peng, H. F. et al. 2007. Functional tissue-engineered blood vessels from bone marrow progenitor cells. Cardiovasc. Res., 75, 618–28.CrossRefGoogle ScholarPubMed
Gang, E. J., Jeong, J. A., Han, S. et al. 2006. In vitro endothelial potential of human UC blood-derived mesenchymal stem cells. Cytotherapy, 8, 215–27.CrossRefGoogle ScholarPubMed
Au, P., Tam, J., Fukumura, D. and Jain, R. K. 2008. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood, 111, 4551–8.CrossRefGoogle ScholarPubMed
Rodriguez, L. V., Alfonso, Z., Zhang, R. et al. 2006. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc. Nat. Acad. Sci. USA, 103, 12167–72.CrossRefGoogle ScholarPubMed
DiMuzio, P. and Tulenko, T. 2007. Tissue engineering applications to vascular bypass graft development: the use of adipose-derived stem cells. J. Vasc. Surg., 45(Suppl. A), A99–103.CrossRefGoogle ScholarPubMed
Wang, C., Cen, L., Yin, S. et al. 2010. A small diameter elastic blood vessel wall prepared under pulsatile conditions from polyglycolic acid mesh and smooth muscle cells differentiated from adipose-derived stem cells. Biomaterials, 31, 621–30.CrossRefGoogle ScholarPubMed
Zhang, X., Xu, Y., Thomas, V., Bellis, S. L. and Vohra, Y. K. 2011. Engineering an antiplatelet adhesion layer on an electrospun scaffold using porcine endothelial progenitor cells. J. Biomed. Mater. Res. A, 97, 145–51.CrossRefGoogle ScholarPubMed
Cho, S.-W., Lim, S. H., Kim, I.-K. et al. 2005. Small-diameter blood vessels engineered with bone marrow-derived cells. Ann. Surg., 241, 506–15.CrossRefGoogle ScholarPubMed
Shinoka, T., Shum-Tim, D., Ma, P. X. et al. 1998. Creation of viable pulmonary artery autografts through tissue engineering. J. Thorac. Cardiovasc. Surg., 115, 536–45; discussion 545–6.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×