Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T18:06:04.708Z Has data issue: false hasContentIssue false

24 - Diatoms of aerial habitats

from Part V - Other applications

Published online by Cambridge University Press:  05 June 2012

Jeffrey R. Johansen
Affiliation:
John Carroll University
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Although studied less than aquatic diatoms, aerial diatoms are discussed in an extensive literature. Most publications on the topic consist merely of floristic lists. Thus, our understanding of aerial diatom ecology is meager. Given the brevity of the current chapter, it is not possible to list all of the pertinent literature. This paper will summarize aerial diatom studies based on floristic literature and my own work.

The most important pioneer worker on aerial diatoms was probably Johannes Boye Petersen. Unlike many early soil phycologists, he treated diatoms with both detail and taxonomic accuracy. Petersen (1915, 1928, 1935) examined numerous aerial samples from Denmark, Iceland, and east Greenland. In all, he found 196 diatom taxa from soils, wet rocks, wet tree bark, and mosses, many of which were new to science at that time.

Other important early floristic works are those of Beger (1927, 1928), Krasske (1932, 1936, 1948), Hustedt (1942, 1949), Lund (1945), and Bock (1963). More recent studies report diatom floras associated with limestone caves, sandstone cliff faces, wet rocks, mosses, and soils. Added to these studies are numerous papers on aerial algae, which discuss diatoms to some extent. Reviews on terrestrial algae have generally slighted the diatoms, although none have ignored them (Novichkova-Ivanova, 1980; Metting, 1981; Starks et al., 1981; Hoffmann, 1989; Johansen, 1993).

Petersen (1935) defined a number of categories for aerial algae based on their habitat type. Euaerial algae inhabit raised, prominent objects that receive moisture solely from the atmosphere.

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 465 - 472
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, D. C. & Rushforth, S. R. (1976). The cryptogamic flora of desert soil crusts in southern Utah. Nova Hedwigia, 28, 691–729.Google Scholar
Bass-Becking, L. G. M. (1934). Geobiologie of Inleiding tot de Milieukunde. The Hague: Van Stock and Zoon.Google Scholar
Beger, H. (1927). Beiträge zur Ökologie und Soziologie der luftlebigen (atmophytischen) Kieselalgen. Berichte der Deutschen Botanischen Gesellschaft, 45, 385–407.Google Scholar
Beger, H. (1928). Atmosphytische Moosdiatomeen in den Alpen. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 73 (Beib. 15), 382–404.Google Scholar
Bock, W. (1963). Diatomeen extrem trockener Standorte. Nova Hedwigia, 5, 199–254 (+ 3 plates).Google Scholar
Bothwell, M. L., Sherbot, D., Roberge, A. C., & Daley, R. J. (1993). Influence of natural ultraviolet radiation on lotic periphytic diatom community growth, biomass accrual, and species composition: short-term versus long-term effects. Journal of Phycology, 29, 24–35.CrossRefGoogle Scholar
Bristol-Roach, B. M. (1927). On the algae of some normal English soils. Journal of Agricultural Science, 17, 563–88.CrossRefGoogle Scholar
Camburn, K. E. (1982). Subaerial diatom communities in eastern Kentucky. Transactions of the American Microscopical Society, 101, 375–87.CrossRefGoogle Scholar
Cantonati, M. & Lange-Bertalot, H. (2006). Achnanthidium dolomiticum sp. nov. (Bacillariophyta) from oligotrophic mountain springs and lakes fed by dolomite aquifers. Journal of Phycology, 42, 1184–8.CrossRefGoogle Scholar
Carter, J. (1971). Diatoms from the Devil's Hole Cave, Fife, Scotland. Nova Hedwigia, 21, 657–81.Google Scholar
Cremer, H., Gore, D., Hultzsch, N., Melles, M., & Wagner, B. (2004). The diatom flora and limnology of lakes in the Amery Oasis, East Antarctica. Polar Biology, 27, 513–31.CrossRefGoogle Scholar
Cremer, H. & Wagner, B. (2003). The diatom flora of the ultra-oliotrophic Lake El'gygytgyn, Chukotka. Polar Biology, 26, 105–14.Google Scholar
Davey, M. C. & Rothery, P. (1992). Factors causing the limitation of growth of terrestrial algae in maritime Antarctica during late summer. Polar Biology, 12, 595–601.CrossRefGoogle Scholar
Douglas, M. S. V. & Smol, J. P. (1995). Periphytic diatom assemblages from High Arctic ponds. Journal of Phycology, 31, 60–9.CrossRefGoogle Scholar
Ettl, H. & Gärtner, G. (1995). Syllabus der Boden-, Luft- und Flechtenalgen. Stuttgart: Gustav Fischer Verlag.Google Scholar
Fenchel, T. & Finlay, B. (2004). The ubiquity of small species: patterns of local and global diversity. BioScience, 54, 777–84.CrossRefGoogle Scholar
Finlay, B. J. (2002). Global dispersal of free-living microbial eukaryote species. Science, 296, 1061–1063.CrossRefGoogle ScholarPubMed
Finlay, B. J. & Clarke, K. J. (1999). Ubiquitous dispersal of microbial species. Nature, 400, 828.CrossRefGoogle Scholar
Flechtner, V. R., Johansen, J. R. & Clark, W. H. (1998). Algal composition of microbiotic crusts from the central desert of Baja California, Mexico. Great Basin Naturalist, 58, 295–311.Google Scholar
Flechtner, V. R., Johansen, J. R., & Belnap, J. (2008). The biological soil crusts from the San Nicolas Island: enigmatic algae from a geographically isolated ecosystem. Western North American Naturalist, 68, 405–36.CrossRefGoogle Scholar
Furey, P. C., Lowe, R. L. & Johansen, J. R. (2007). Wet wall algal community response to in-field nutrient manipulation in the Great Smoky Mountains National Park, U.S.A. Algological Studies, 125, 17–43.CrossRefGoogle Scholar
Furey, P. C., Lowe, R. L., & Johansen, J. R. (2009). Morphological deformities in Eunotia taxa from high elevation springs and streams in the Great Smoky Mountains National Park, with a description of Eunotia macroglossa sp. nov. Diatom Research, 24, 273–90.CrossRefGoogle Scholar
Gremmen, N. J. M., Vijver, B., Frenot, Y., & Lebouvier, M. (2007). Distribution of moss-inhabiting diatoms along an altitudinal gradient at sub-Antarctic Îles Kerguelen. Antarctic Science, 19, 17–24.CrossRefGoogle Scholar
Hoffmann, L. (1989). Algae of terrestrial habitats. The Botanical Review, 55, 77–105.CrossRefGoogle Scholar
Hustedt, F. (1942). Aërofile Diatomeen in der nordwestdeutschen Flora. Berichte der Deutschen Botanischen Gesellschaft, 40, 55–73.Google Scholar
Hustedt, F. (1949). Diatomeen von der Sinai-Halbinsel und aus dem Libanon-Gebiet. Hydrobiolgia, 2, 24–55.CrossRefGoogle Scholar
Ito, Y. & Horiuchi, S. (1991). Distribution of living terrestrial diatoms and its application to the paleoenvironmental analyses. Diatom, 6, 23–44.Google Scholar
Johansen, J. R. (1993). Cryptogamic crusts of semiarid and arid lands of North America. The Journal of Phycology, 29, 140–7.CrossRefGoogle Scholar
Johansen, J. R. (1999). Diatoms of aerial habitats. In The diatoms: Applications for the Environmental and Earth Sciences, ed. Stoermer, E. F. & Smol, J. P., Cambridge: Cambridge University Press, pp. 264–73.CrossRefGoogle Scholar
Johansen, J. R., Ashley, J., & Rayburn, W. R. (1993). Effects of rangefire on soil algal crusts in semiarid shrub-steppe of the lower Columbia Basin and their subsequent recovery. Great Basin Naturalist, 53, 73–88.Google Scholar
Johansen, J. R. & Rushforth, S. R. (1985). Cryptogamic soil crusts: seasonal variation in algal populations in the Tintic Mountains, Juab County, Utah. Great Basin Naturalist, 45, 14–21.Google Scholar
Johansen, J. R., Rushforth, S. R., & Brotherson, J. D. (1981). Subaerial algae of Navajo National Monument, Arizona. Great Basin Naturalist, 41, 433–9.Google Scholar
Johansen, J. R., Rushforth, S. R. & Brotherson, J. D. (1983a). The algal flora of Navajo National Monument, Arizona, U.S.A. Nova Hedwigia, 38, 501–53.Google Scholar
Johansen, J. R., Rushforth, S. R., Obendorfer, R., Fungladda, N., & Grimes, J. (1983b). The algal flora of selected wet walls in Zion National Park, Utah, USA. Nova Hedwigia, 38, 765–808.Google Scholar
Johansen, J. R., St. Clair, L. L., Webb, B. L., & Nebeker, G. T. (1984). Recovery patterns of cryptogamic soil crusts in desert rangelands following fire disturbance. The Bryologist, 87, 238–43.CrossRefGoogle Scholar
Kawecka, B. & Olech, M. (1993). Diatom communities in the Vanishing and Ornithologist Creek, King George Island, South Shetland, Antarctica. Hydrobiologia, 269, 327–33.CrossRefGoogle Scholar
Kilroy, C., Biggs, B. J. F., & Vyverman, W. (2007). Rules for macroorganisms applied to micoorganisms: patterns of endemism in benthic freshwater diatoms. Oikos, 116, 550–64.CrossRefGoogle Scholar
Krasske, G. (1932). Beiträge zur Kenntnis der Diatomeenflora der Alpen. Hedwigia, 72, 92–134 (+ 2 plates).Google Scholar
Krasske, G. (1936). Die Diatomeenflora der Moosrasen des Wilhelmshöher Parkes. Festschrift des Vereins für Naturkunde zu Kassel zum hundertjährigen Bestehen, 151–64 (+ 3 tables).
Krasske, G. (1948). Diatomeen tropischer Moosrasen. Svensk Botanisk Tidskrift, 42, 404–41.Google Scholar
Lange-Bertalot, H., Cavacini, P., Tagliaventi, N., & Alfinito, S. (2003). Diatoms of Sardinia. Iconographia Diatomologica, 12, 1–438.Google Scholar
Lange-Bertalot, H. & Rumrich, M. (2000). Diatomeen der Anden von Venezuela bis Patagonien/Feuerland. Iconographia Diatomologica, 9, 1–649.Google Scholar
Cohu, R. & Vijver, B. (2002). Le genre Diadesmis (Bacillariophyta) dans les archipels de Crozet et de Kerguelen avec la description de cinq espèces nouvelles. Annales de Limnologie, 38, 119–32.CrossRefGoogle Scholar
Lowe, R. L., Furey, P. C., Ress, J. A., & Johansen, J. R. (2007). Diatom biodiversity and distribution on wetwalls in Great Smoky Mountains National Park. Southeastern Naturalist, Special Issue, 1, 135–52.CrossRefGoogle Scholar
Lowe, R. L., Sherwood, A. R., & Ress, J. R. (2009). Freshwater species of Achnanthes Bory (Bacillariophyta) from Hawaii. Diatom Research, 24, 327–40.CrossRefGoogle Scholar
Lund, J. W. G. (1945). Observations on soil algae. I. The ecology, size and taxonomy of British soil diatoms. The New Phytologist, 44, 56–110.CrossRefGoogle Scholar
Metting, B. (1981). The systematics and ecology of soil algae. The Botanical Review, 47, 195–312.CrossRefGoogle Scholar
Novichkova-Ivanova, L. N. (1980). Soil Algae of the Sahara-Gobi Desert Region. Leningrad: Nauka (in Russian).Google Scholar
Petersen, J. B. (1915). Studier over danske aërofile Alger. Det Kongelige Danske Videnskabernes Selskabs Skrifter, Naturvidenskabelig og Mathematisk, 12(7), 271–380.Google Scholar
Petersen, J. B. (1928). The aërial algae of Iceland. The Botany of Iceland, 2(8), 325–447.Google Scholar
Petersen, J. B. (1935). Studies on the biology and taxonomy of soil algae. Danske Botanisk Arkiv, 8(9), 1–180.Google Scholar
Reichardt, E. (1985). Diatomeen an feuchten Felsen des Südlichen Frankenjuras. Berichte Bayerische Botanische Gesellschaft, 56, 167–87.Google Scholar
Reichardt, E. (2004). Eine bemerkenswerte diatomeenassoziation in einem Quellhabitat im Grazer Bergland, Österreich. Iconographia Diatomologica, 13, 419–79.Google Scholar
Rushforth, S. R., Kaczmarska, I., & Johansen, J. R. (1984). The subaerial diatom flora of Thurston Lava Tube, Hawaii. Bacillaria, 7, 135–57.Google Scholar
Smol, J. P. & Douglas, M. S. V. (2007). Crossing the final ecological threshold in High Arctic ponds. Proceedings of the National Academy of Sciences of the USA, 104, 12395–7.CrossRefGoogle ScholarPubMed
Spaulding, S. A., Kociolek, J. P., & Wong, D. (1999). A taxonomic and systematic revision of the genus Muelleria (Bacillariophyta). Phycologia, 38, 314–41.CrossRefGoogle Scholar
Starks, T. L., Shubert, L. E., & Trainor, F. R. (1981). Ecology of soil algae: a review. Phycologia, 20, 65–80.CrossRefGoogle Scholar
Stoermer, E. F. (1962). Notes on Iowa diatoms. II. Species distribution in a subaerial habitat. Iowa Academy of Science, Proceedings, 69, 87–91.Google Scholar
Dam, H., Mertens, A., & Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology, 28, 117–33.CrossRefGoogle Scholar
Vijver, B. (2002). Frustulia cirisiae sp. nov., a new aerophilous diatom from Ile de la Possession (Crozet Archipeligo, Subantarctica). Diatom Research, 17, 415–21.CrossRefGoogle Scholar
Vijver, B. & Beyens, L. (1997). The epiphytic diatom flora of mosses from Strømness Bay area, South Georgia. Polar Biology, 17, 492–501.CrossRefGoogle Scholar
Vijver, B. & Beyens, L. (1998). A preliminary study on the soil diatom assemblages from Ile de la Possession (Crozet, Subantarctica). European Journal of Soil Biology, 34, 133–41.CrossRefGoogle Scholar
Vijver, B., Beyens, L., & Lange-Bertalot, H. (2004). The genus Stauroneis in the Arctic and (Sub-) Antarctic regions. Bibliotheca Diatomologica, 51, 1–317.Google Scholar
Vijver, B., Frenot, Y., & Beyens, L. (2002a). Freshwater diatoms from Ile de la Possession (Crozet Archipeligo, Subantarctica). Bibliotheca Diatomologica, 46, 1–412.Google Scholar
Vijver, B., Frenot, Y., Beyens, L., & Lange-Bertalot, H. (2005). Labellicula, a new diatom genus (Bacillariophyta) from Île de la Possession (Crozet Archipelago, Subantarctica). Cryptogamie Algologie, 26, 125–33.Google Scholar
Vijver, B., Gremmen, N., & Smith, V. (2008). Diatom communities from the sub-Antarctic Prince Edward Islands: diversity and distribution patterns. Polar Biology, 31, 795–808.CrossRefGoogle Scholar
Vijver, B. & Kopalová, . (2008). Orthoseira gremmenii sp. nov., a new aerophilic diatom from Gough Island (southern Atlantic Ocean). Cryptogamie Algologie, 29, 105–18.Google Scholar
Vijver, B. & Cohu, R. (2003). Two new species of the genus Geissleria Lange-Bertalot and Metzeltin (Bacillariophyceae) from the Kerguelen and Crozet archipeligos (TAAF, Subantarctica). Nova Hedwigia, 77, 341–9.CrossRefGoogle Scholar
Vijver, B., Ledeganck, P., & Beyens, L. (2002b). Soil diatom communities from Ile de Possession (Crozet, sub-Antarctica). Polar Biology, 25, 721–9.Google Scholar
Vijver, B., Ledeganck, P., & Beyens, L. (2002c). Three new Diadesmis taxa on Ile de Possession (Crozet Archipeligo, Subantarctica). Cryptogamie Algologie, 23, 333–41.Google Scholar
Vijver, B., Ledeganck, P., & Lebouvier, M. (2002d). Luticola beyensii sp. nov., a new aerophilous diatom from Ile Saint Paul (Indian Ocean, TAAF). Diatom Research, 17, 235–41.CrossRefGoogle Scholar
Vijver, B. & Mataloni, G. (2008). New and interesting species in the genus Luticola D. G. Mann (Bacillariophyta) from Deception Island (South Shetland Islands). Phycologia, 47, 451–67.CrossRefGoogle Scholar
Kerckvoorde, A., Trappeniers, K., Nijs, I., & Beyens, L. (2000). Terrestrial soil diatom assemblages from different vegetation types in Zackenberg (Northeast Greenland). Polar Biology, 23, 392–400.CrossRefGoogle Scholar
VanLandingham, S. L. (1964). Diatoms from Mammoth Cave, Kentucky. International Journal of Speleology, 1, 517–39.CrossRefGoogle Scholar
VanLandingham, S. L. (1966). Three new species of Cymbella from Mammoth Cave, Kentucky. International Journal of Speleology, 2, 133–6.CrossRefGoogle Scholar
VanLandingham, S. L. (1967). A new species of Gomphonema (Bacillariophyta) from Mammoth Cave, Kentucky. International Journal of Speleology, 2, 405–6.CrossRefGoogle Scholar
Veselá, J. & Johansen, J. R. (2009). The diatom flora of headwater streams in the Elbsandsteingebirge Region of the Czech Republic. Diatom Research, 24, 443–77.CrossRefGoogle Scholar
Vyverman, W., Verleyen, E., Sabbe, K., et al. (2007). Historical processes constrain patterns in global diatom diversity. Ecology, 88, 1924–31.CrossRefGoogle ScholarPubMed
Werum, M. & Lange-Bertalot, H. (2004). Diatoms in springs from central Europe and elsewhere under the influence of hydrogeology and anthropogenic impacts. Iconographia Diatomologica, 13, 1–417.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×