Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-02T06:41:41.720Z Has data issue: false hasContentIssue false

11 - G protein-independent and β arrestin-dependent GPCR signaling

from PART III - GPCR SIGNALING FEATURES

Published online by Cambridge University Press:  05 June 2012

Zhongzhen Nie
Affiliation:
University of Florida
Yehia Daaka
Affiliation:
University of Florida
Sandra Siehler
Affiliation:
Novartis Institute for Biomedical Research
Graeme Milligan
Affiliation:
University of Glasgow
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
G Protein-Coupled Receptors
Structure, Signaling, and Physiology
, pp. 217 - 230
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pierce, KL, Premont, RT, Lefkowitz, RJ.Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. (2002) 3: 639–50.CrossRefGoogle ScholarPubMed
Premont, RT, Gainetdinov, RR. Physiological roles of G protein-coupled receptor kinases and Arrestins. Annu. Rev. Physiol. (2007) 69: 511–34.CrossRefGoogle ScholarPubMed
Moore, CAC, Milano, SK, Benovic, JL. Regulation of receptor trafficking by GRKs and Arrestins. Annu. Rev. Physiol. (2007) 69: 451–82.CrossRefGoogle ScholarPubMed
Kohout, TA, Lin, FT, Perry, SJ, Conner, DA, Lefkowitz, RJ. β-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc. Natl. Acad. Sci. U.S.A. (2001) 98: 1601–6.Google ScholarPubMed
Lefkowitz, RJ, Shenoy, SK. Transduction of receptor signals by β-Arrestins. Science (2005) 308: 512–7.CrossRefGoogle ScholarPubMed
DeFea, K.β-Arrestins and heterotrimeric G-proteins: collaborators and competitors in signal transduction. Br. J. Pharmacol. (2008) 153: S298-S309.CrossRefGoogle ScholarPubMed
Penn, RB, Pronin, AN, Benovic, JL. Regulation of G protein-coupled receptor kinases. Trends Cardiovasc. Med. (2000) 10: 81–9.CrossRefGoogle ScholarPubMed
Ballesteros, JA, Jensen, AD, Liapakis, G, et al. Activation of the β2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem. (2001) 276: 29171–7.CrossRefGoogle Scholar
Kenakin, T.New concepts in drug discovery: Collateral efficacy and permissive antagonism. Nat. Rev. Drug Discov. (2005) 4: 919–27.CrossRefGoogle ScholarPubMed
Violin, JD, Lefkowitz, RJ.β-Arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci. (2007) 28: 416–22.CrossRefGoogle ScholarPubMed
Wisler, JW, DeWire, SM, Whalen, EJ, et al. A unique mechanism of β-blocker action: Carvedilol stimulates β-Arrestin signaling. Proc. Natl. Acad. Sci. U.S.A. (2007) 104: 16657–62.CrossRefGoogle ScholarPubMed
McDonald, PH, Lefkowitz, RJ. β-Arrestins: New roles in regulating heptahelical receptors' functions. Cell. Signal. (2001) 13: 683–9.CrossRefGoogle ScholarPubMed
Reiter, E, Lefkowitz, RJ. GRKs and β-Arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol. Metab. (2006) 17: 159–65.CrossRefGoogle ScholarPubMed
Pitcher, JA, Freedman, NJ, Lefkowitz, RJ. G protein-coupled receptor kinases. Annu. Rev. Biochem. (1998) 67: 653–92.CrossRefGoogle ScholarPubMed
Daaka, Y, Luttrell, LM, Lefkowitz, RJ. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature (1997) 390: 88–91.Google ScholarPubMed
Shenoy, SK, Drake, MT, Nelson, CD, et al. β-Arrestin-dependent, G protein-independent ERK1/2 activation by the β2 adrenergic receptor. J. Biol. Chem. (2006) 281: 1261–73.CrossRefGoogle Scholar
Scarselli, M, Donaldson, JG. Constitutive internalization of G protein-coupled receptors and G proteins via clathrin-independent endocytosis. J. Biol. Chem. (2009) 284: 3577–85.CrossRefGoogle Scholar
Marchese, A, Paing, MM, Temple, BRS, Trejo, J.G protein-coupled receptor sorting to endosomes and lysosomes. Annu. Rev. Pharmacol. Toxicol. (2008) 48: 601–29.CrossRefGoogle ScholarPubMed
Gurevich, VV, Gurevich, EV.The structural basis of Arrestin-mediated regulation of G-protein- coupled receptors. Pharmacol. Ther. (2006) 110: 465–502.CrossRefGoogle ScholarPubMed
Donaldson, JG.Multiple roles for Arf6: Sorting, structuring, and signaling at the plasma membrane. J. Biol. Chem. (2003) 278: 41573–6.CrossRefGoogle ScholarPubMed
Casanova, JE.Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic (2007) 8: 1476–85.CrossRefGoogle ScholarPubMed
Claing, A, Perry, SJ, Achiriloaie, M, et al. Multiple endocytic pathways of G protein-coupled receptors delineated by GIT1 sensitivity. Proc. Natl. Acad. Sci. U.S.A. (2000) 97: 1119–24.CrossRefGoogle ScholarPubMed
Randazzo, PA, Hirsch, DS.Arf GAPs: multifunctional proteins that regulate membrane traffic and actin remodelling. Cell. Signal. (2004) 16: 401–13.CrossRefGoogle ScholarPubMed
Povsic, TJ, Kohout, TA, Lefkowitz, RJ.β-Arrestin1 mediates insulin-like growth factor 1 (IGF-1) activation of phosphatidylinositol 3-kinase (PI3K) and anti-apoptosis. J. Biol. Chem. (2003) 278: 51334–9.CrossRefGoogle ScholarPubMed
DeWire, SM, Ahn, S, Lefkowitz, RJ, Shenoy, SK.β-Arrestins and cell signaling. Annu. Rev. Physiol. (2007) 69: 483–510.CrossRefGoogle ScholarPubMed
Prenzel, N, Zwick, E, Daub, H, et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 1999; 402: 884–8.CrossRefGoogle ScholarPubMed
Daaka, Y, Luttrell, LM, Ahn, S, et al. Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J. Biol. Chem. (1998) 273: 685–8.CrossRefGoogle Scholar
Luttrell, LM, Ferguson, SSG, Daaka, Y, et al. β-Arrestin-dependent formation of β2 adrenergic receptor Src protein kinase complexes. Science (1999) 283: 655–61.CrossRefGoogle ScholarPubMed
Maudsley, S, Pierce, KL, Zamah, AM, et al. The β2-adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor. J. Biol. Chem. (2000) 275: 9572–80.CrossRefGoogle Scholar
Luttrell, LM, Roudabush, FL, Choy, EW, et al. Activation and targeting of extracellular signal-regulated kinases by β-Arrestin scaffolds. Proc. Natl. Acad. Sci. U.S.A. (2001) 98: 2449–54.CrossRefGoogle ScholarPubMed
Shenoy, SK, Lefkowitz, RJ.Receptor-specific ubiquitination of β-Arrestin directs assembly and targeting of seven-transmembrane receptor signalosomes. J. Biol. Chem. (2005) 280: 15315–24.CrossRefGoogle ScholarPubMed
Perry, SJ, Baillie, GS, Kohout, TA, et al. Targeting of cyclic AMP degradation to β2-adrenergic receptors by β-Arrestins. Science (2002) 298: 834–6.CrossRefGoogle ScholarPubMed
Baillie, GS, Sood, A, McPhee, I, et al. β-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates β-adrenoceptor switching from Gs to Gi. Proc. Natl. Acad. Sci. U.S.A. (2003) 100: 940–5.CrossRefGoogle ScholarPubMed
Nelson, CD, Perry, SJ, Regier, DS, Prescott, SM, Topham, MK, Lefkowitz, RJ.Targeting of diacylglycerol degradation to M1 muscarinic receptors by β-Arrestins. Science (2007) 315: 663–6.CrossRefGoogle ScholarPubMed
Goel, R, Phillips-Mason, PJ, Raben, DM, Baldassare, JJ.α-Thrombin induces rapid and sustained Akt phosphorylation by β-Arrestin1-dependent and -independent mechanisms, and only the sustained Akt phosphorylation is essential for G(1) phase progression. J. Biol. Chem. (2002) 277: 18640–8.CrossRefGoogle Scholar
Goel, R, Phillips-Mason, PJ, Gardner, A, Raben, DM, Baldassare, JJ.α-thrombin-mediated phosphatidylinositol 3-kinase activation through release of Gβγ dimers from Gαq and Gαi2. J. Biol. Chem. (2004) 279: 6701–10.CrossRefGoogle ScholarPubMed
Beaulieu, JM, Sotnikova, TD, Marion, S, Lefkowitz, RJ, Gainetdinov, RR, Caron, MG.An Akt/β- arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell (2005) 122: 261–73.CrossRefGoogle ScholarPubMed
Wei, HJ, Ahn, S, Shenoy, SK, et al. Independent β-Arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc. Natl. Acad. Sci. U.S.A. (2003) 100: 10782–7.CrossRefGoogle Scholar
Lin, FT, Krueger, KM, Kendall, HE, et al. Clathrin-mediated endocytosis of the β-adrenergic receptor is regulated by phosphorylation/dephosphorylation of β-Arrestin1. J. Biol. Chem. (1997) 272: 31051–7.CrossRefGoogle ScholarPubMed
Lin, FT, Miller, WE, Luttrell, LM, Lefkowitz, RJ.Feedback regulation of β-Arrestin1 function by extracellular signal-regulated kinases. J. Biol. Chem. (1999) 274: 15971–4.CrossRefGoogle ScholarPubMed
Kim, YM, Barak, LS, Caron, MG, Benovic, JL.Regulation of Arrestin-3 phosphorylation by casein kinase II. J. Biol. Chem. (2002) 277: 16837–46.CrossRefGoogle ScholarPubMed
Shenoy, SK, McDonald, PH, Kohout, TA, Lefkowitz, RJ.Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-Arrestin. Science (2001) 294: 1307–13.CrossRefGoogle ScholarPubMed
Shenoy, SK, Lefkowitz, RJ.Trafficking patterns of β-Arrestin and G protein-coupled receptors determined by the kinetics of β-arrestin deubiquitination. J. Biol. Chem. (2003) 278: 14498–506.CrossRefGoogle Scholar
Shenoy, SK, Modi, AS, Shukla, AK, et al. β-Arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Proc. Natl. Acad. Sci. U.S.A. (2009) 106: 6650–5.CrossRefGoogle ScholarPubMed
Ozawa, K, Whalen, EJ, Nelson, CD, et al. S-nitrosylation of β-Arrestin regulates β-adrenergic receptor trafficking. Mol. Cell (2008) 31: 395–405.CrossRefGoogle ScholarPubMed
Bohn, LM, Lefkowitz, RJ, Gainetdinov, RR, Peppel, K, Caron, MG, Lin, FT.Enhanced morphine analgesia in mice lacking β-Arrestin 2. Science (1999) 286: 2495–8.CrossRefGoogle ScholarPubMed
Bohn, LM, Gainetdinov, RR, Lin, FT, Lefkowitz, RJ, Caron, MG.μ-Opioid receptor desensitization by β-Arrestin-2 determines morphine tolerance but not dependence. Nature (2000) 408: 720–3.CrossRefGoogle Scholar
Walters, RW, Shukla, AK, Kovacs, JJ, et al. β-Arrestin1 mediates nicotinic acid-induced flushing, but not its antilipolytic effect, in mice. J. Clin. Invest. (2009) 119: 1312–21.CrossRefGoogle Scholar
Luan, B, Zhao, J, Wu, HY, et al. Deficiency of a β-Arrestin-2 signal complex contributes to insulin resistance. Nature (2009) 457: 1146–U105.CrossRefGoogle ScholarPubMed
Shinohara, T, Singh, VK, Tsuda, M, Yamaki, K, Abe, T, Suzuki, S.S-antigen from gene to autoimmune uveitis. Exp. Eye Res. (1990) 50: 751–7.CrossRefGoogle ScholarPubMed
Baylor, DA, Burns, ME.Control of rhodopsin activity in vision. Eye (1998) 12: 521–5.CrossRefGoogle ScholarPubMed
Fong, AM, Premont, RT, Richardson, RM, Yu, YRA, Lefkowitz, RJ, Patel, DD. Defective lymphocyte chemotaxis in β-Arrestin2-and GRK6-deficient mice. Proc. Natl. Acad. Sci. U.S.A. (2002) 99: 7478–83.CrossRefGoogle ScholarPubMed
Walker, JKL, Fong, AM, Lawson, BL, et al. β-Arrestin-2 regulates the development of allergic asthma. J. Clin. Invest. (2003) 112: 566–74.CrossRefGoogle ScholarPubMed
DeFea, KA.Stop that cell! β-Arrestin-dependent chemotaxis: A tale of localized actin assembly and receptor desensitization. Annu. Rev. Physiol. (2007) 69: 535–60.CrossRefGoogle ScholarPubMed
Ge, L, Shenoy, SK, Lefkowitz, RJ, DeFea, K.Constitutive protease-activated receptor-2-mediated migration of MDA MB-231 breast cancer cells requires both β-Arrestin-1 and -2. J. Biol. Chem. (2004) 279: 55419–24.CrossRefGoogle ScholarPubMed
Barnes, WG, Reiter, E, Violin, JD, Ren, XR, Milligan, G, Lefkowitz, RJ.β-Arrestin 1 and Gαq/11 coordinately activate RhoA and stress fiber formation following receptor stimulation. J. Biol. Chem. (2005) 280: 8041–50.CrossRefGoogle ScholarPubMed
Scott, MGH, Pierotti, V, Storez, H, et al. Cooperative regulation of extracellular signal-regulated kinase activation and cell shape change by filamin A and β-Arrestins. Mol. Cell. Biol. (2006) 26: 3432–45.CrossRefGoogle ScholarPubMed
Morrison, DK, Davis, RJ.Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu. Rev. Cell Dev. Biol. (2003) 19: 91–118.CrossRefGoogle ScholarPubMed
Tohgo, AK, Pierce, KL, Choy, EW, Lefkowitz, RJ, Luttrell, LM.β-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J. Biol. Chem. (2002) 277: 9429–36.CrossRefGoogle ScholarPubMed
DeFea, KA, Zalevsky, J, Thoma, MS, Dery, O, Mullins, RD, Bunnett, NW.β-Arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J. Cell Biol. (2000) 148: 1267–81.CrossRefGoogle ScholarPubMed
Archacki, SR, Angheloiu, G, Tian, XL, et al. Identification of new genes differentially expressed in coronary artery disease by expression profiling. Physiol. Genomics (2003) 15: 65–74.CrossRefGoogle ScholarPubMed
Kim, J, Zhang, L, Peppel, K, et al. β-Arrestins regulate atherosclerosis and neointimal hyperplasia by controlling smooth muscle cell proliferation and migration. Cir. Res. (2008) 103: 70–9.CrossRefGoogle ScholarPubMed
Zhai, PY, Yamamoto, M, Galeotti, J, et al. Cardiac-specific overexpression of AT1 receptor mutant lacking Gαq/Gαi coupling causes hypertrophy and bradycardia in transgenic mice. J. Clin. Invest. (2005) 115: 3045–56.CrossRefGoogle Scholar
Noma, T, Lemaire, A, Prasad, SVN, et al. β-Arrestin-mediated β1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J. Clin. Invest. (2007) 117: 2445–58.CrossRefGoogle ScholarPubMed
Lymperopoulos, A, Rengo, G, Zincarelli, C, Kim, J, Soltys, S, Koch, WJ.An adrenal β-Arrestin 1- mediated signaling pathway underlies angiotensin II-induced aldosterone production in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. (2009) 106: 5825–30.CrossRefGoogle ScholarPubMed
Xiao, K, McClatchy, DB, Shukla, AK, et al. Functional specialization of β-Arrestin interactions revealed by proteomic analysis. Proc. Natl. Acad. Sci. U.S.A. (2007) 104: 12011–6.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×