Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T15:49:42.723Z Has data issue: false hasContentIssue false

14 - How does the timing of neural signals map onto the timing of perception?

from Part III - Temporal phenomena: binding and asynchrony

Published online by Cambridge University Press:  05 October 2010

Romi Nijhawan
Affiliation:
University of Sussex
Beena Khurana
Affiliation:
University of Sussex
Get access

Summary

Summary

Different features of stimuli are processed in the central nervous system at different speeds. However, such neural time differences do not map directly onto perceptual time differences. How the brain accounts for timing disparities to correctly judge the temporal order of events in the world is the temporal binding problem. I weigh physiological data against new psychophysical findings both within and between modalities. The essence of the paradox is that the timing of neural signals appears, at first blush, too variable for the high accuracy of the psychophysical judgments. I marshal data indicating that ∼80 msec is an important duration in perception and make the novel suggestion that this number is directly mirrored in the physiology. In recordings from several areas of the primate visual system, the difference between the slowest and fastest latencies based on luminance contrast is 80 msec. If the rest of the brain wants to time outside stimuli correctly, it must account for the fact that the earliest stages of the visual system spread signals out in time. I suggest that the brain waits for the slowest information to arrive before committing to a percept. This strategy only applies to visual awareness; in contrast, the motor system may form its reactions based on the first incoming spikes.

Introduction

One goal of modern neuroscience is to relate physiological data to perception (Eagleman 2001). How do spikes recorded from single neurons map onto object recognition, brightness perception, or timing judgments?

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bachmann, T. (1994). Psychophysiology of Visual Masking. Commack, NY: Nova Science.Google Scholar
Blake, R., & Lee, S. H. (2005). The role of temporal structure in human vision. Behav Cogn Neurosci Rev 4(1): 21–42.CrossRefGoogle ScholarPubMed
Burr, D. C., & Morgan, M. J. (1997). Motion deblurring in human vision. Proc Biol Sci 264(1380): 431–436.CrossRefGoogle ScholarPubMed
Callaway, E. M. (1998). Local circuits in primary visual cortex of the macaque monkey. Annu Rev Neurosci 21: 47–74.CrossRefGoogle ScholarPubMed
Crick, F., & Koch, C. (1990). Some reflections on visual awareness. Cold Spring Harb Symp Quant Biol 55: 953–962.CrossRefGoogle ScholarPubMed
Dennett, D. C. (1991). Consciousness Explained. Boston: Little, Brown & Co.Google Scholar
Di Lollo, V. (1980). Temporal integration in visual memory. J Exp Psychol Gen 109(1): 75–97.CrossRefGoogle ScholarPubMed
Eagleman, D. M. (2001). Visual illusions and neurobiology. Nat Rev Neurosci 2: 920–926.CrossRefGoogle ScholarPubMed
Eagleman, D. M. (2008). Human time perception and its illusions. Curr Opin Neurobiol. In press.Google Scholar
Eagleman, D. M., & Dennett, D. (In preparation). Computation on a need-to-know basis.
Eagleman, D. M., & Sejnowski, T. J. (2000a). Motion integration and postdiction in visual awareness. Science 287: 2036–2038.CrossRefGoogle ScholarPubMed
Eagleman, D. M., & Sejnowski, T. J. (2000b). Latency difference versus postdiction: response to Patel et al. Science 290(5494): 1051a.Google Scholar
Eagleman, D. M., & Sejnowski, T. J. (2000c). The position of moving objects: response to Krekelberg et al. Science 289: 1107a.Google Scholar
Eagleman, D. M., & Sejnowski, T. J. (2003). The line-motion illusion can be reversed by motion signals after the line disappears. Perception 32: 963–968.CrossRefGoogle ScholarPubMed
Eagleman, D. M., & Sejnowski, T. J. (2007). Motion signals bias position judgments: a unified explanation for the flash-lag, flash-drag, flash-jump and Frohlich effects. J Vision 7(4): 1–12.CrossRefGoogle Scholar
Engel, A. K., Konig, P., et al. (1992). Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci 15(6): 218–226.CrossRefGoogle Scholar
Gawne, T. J., Kjaer, T. W., et al. (1996). Latency: another potential code for feature binding in striate cortex. J Neurophysiol 76(2): 1356–1360.CrossRefGoogle ScholarPubMed
Goodale, M. A., & Milner, A. (1992). Separate visual pathways for perception and action. Trends Neurosci 15: 20–25.CrossRefGoogle ScholarPubMed
Goodale, M. A., & Milner, A. D. (2004). Sight Unseen. Oxford: Oxford University Press.Google Scholar
Hirsh, I. J., & Sherrick, C. E. (1961). Perceived order in different sense modalities. J Exp Psychol 62: 423–432.CrossRefGoogle ScholarPubMed
Intraub, H. (1985). Visual dissociation: an illusory conjunction of pictures and forms. J Exp Psychol: Hum Percept Perform 11: 431–442.Google ScholarPubMed
Julesz, B., & White, B. (1969). Short term visual memory and the Pulfrich phenomenon. Nature 222(194): 639–641.CrossRefGoogle ScholarPubMed
Kinsbourne, M. (1993). Integrated cortical field model of consciousness. Ciba Found Symp 174: 43–50.Google Scholar
Kline, K. A., & Eagleman, D. M. (2008). Evidence against the snapshot hypothesis of illusory motion reversal. J Vis 8(4): 13, 1–5.CrossRefGoogle Scholar
Kline, K. A., Holcombe, A. O., et al. (2004). Illusory reversal of motion is caused by rivalry, not by perceptual snapshots of the visual scene. Vision Res 44(23): 2653–2658.CrossRefGoogle ScholarPubMed
Kolers, P., & von Grunau, M. (1976). Shape and color in apparent motion. Vision Res 16: 329–335.CrossRefGoogle ScholarPubMed
Kopinska, A., & Harris, L. R. (2004). Simultaneity constancy. Perception 33: 1049–1060.CrossRefGoogle ScholarPubMed
Kopinska, A., Harris, L. R., & Lee, I. (2003). Comparing central and peripheral events: compensating for neural processing delays. J Vis 3: 751a.CrossRefGoogle Scholar
Lamme, V. A. (2003). Why visual attention and awareness are different, Trends Cogn Sci 7: 12–18.CrossRefGoogle ScholarPubMed
Lamme, V. A., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing, Trends Neurosci 23: 571–579.CrossRefGoogle ScholarPubMed
Libet, B., Alberts, W. W., Wright, E. W., & Feinstein, B. (1967). Responses of human somatosensory cortex to stimuli below threshold for conscious sensation. Science 158: 1597–1600.CrossRefGoogle ScholarPubMed
Macknik, S. L., & Livingstone, M. S. (1998). Neuronal correlates of visibility and invisibility in the primate visual system. Nat Neurosci 1(2): 144–149.CrossRefGoogle ScholarPubMed
Maunsell, J. H., Ghose, G. M., et al. (1999). Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Vis Neurosci 16(1): 1–14.CrossRefGoogle ScholarPubMed
Mumford, D. (1994). Neuronal architectures for pattern-theoretic problems. In: C., Koch & J. L., Davis (eds.), Large-Scale Neuronal Theories of the Brain (125–152). Cambridge, MA: MIT Press.Google Scholar
Nowak, L. G., & Bullier, J. (1997). The timing of information transfer in the visual system. In: J., Kass, K., Rockland, & A., Peters (eds.), ‘Extrastriate Cortex’ Cerebral Cortex, Vol. 12 (205–241). New York: Plenum Press.Google Scholar
Oram, M. W., Xiao, D., et al. (2002). The temporal resolution of neural codes: does response latency have a unique role? Philos Trans R Soc Lond B Biol Sci 357(1424): 987–1001.CrossRefGoogle ScholarPubMed
Patel, S. S., Ogmen, H., et al. (2000). Flash-lag effect: differential latency, not postdiction. Science 290(5494): 1051.CrossRefGoogle Scholar
Pessoa, L., Thompson, E., et al. (1998). Finding out about filling-in: a guide to perceptual completion for visual science and the philosophy of perception. Behav Brain Sci 21(6): 723–748; discussion 748–802.CrossRefGoogle ScholarPubMed
Pulfrich, C. (1922). Die Stereoskopie im Dienste der isochromen und heterochromen Photometrie. Die Naturwissenschafte 10.CrossRefGoogle Scholar
Purpura, K., Tranchina, D., et al. (1990). Light adaptation in the primate retina: analysis of changes in gain and dynamics of monkey retinal ganglion cells. Vis Neurosci 4(1): 75–93.CrossRefGoogle ScholarPubMed
Purushothaman, G., Patel, S. S., et al. (1998). Moving ahead through differential visual latency. Nature 396(6710): 424.CrossRefGoogle ScholarPubMed
Ross, J., & Hogben, J. H. (1974). Short-term memory in stereopsis. Vision Res 14(11): 1195–1201.CrossRefGoogle ScholarPubMed
Schmolesky, M. T., Wang, Y., Hanes, D. P., Thompson, K. G., Leutgeb, S., Schall, J. D., et al. (1998). Signal timing across the macaque visual system. J Neurophysiol 79(6): 3272–3278.CrossRefGoogle ScholarPubMed
Steinmetz, R., & Engler, C. (1993). Human perception of Media Synchronization. IBM ENB Tech Rep 43(9310). Heidelberg.Google Scholar
Thorpe, S., Delorme, A., et al. (2001). Spike-based strategies for rapid processing. Neural Network 14(6–7): 715–725.CrossRefGoogle ScholarPubMed
Uttal, W. R. (1979). Do central nonlinearities exist? Behav Brain Sci 2: 286.CrossRefGoogle Scholar
VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous? Trends Cogn Sci 7(5): 207–213.CrossRefGoogle ScholarPubMed
Varela, F. J., Toro, A., et al. (1981). Perceptual framing and cortical alpha rhythm. Neuropsychologia 19(5): 675–686.Google ScholarPubMed
Whitney, D., & Cavanagh, P. (2000). Latency difference, not postdiction. Science.Google ScholarPubMed
Whitney, D., & Murakami, I. (1998). Latency difference, not spatial extrapolation. Nat Neurosci 1(8): 656–657.CrossRefGoogle Scholar
Wilson, J. A., & Anstis, S. M. (1969). Visual delay as a function of luminance. Am J Psychol 82(3): 350–358.CrossRefGoogle ScholarPubMed
Zeki, S., & Bartels, A. (1998a). The asynchrony of consciousness. Proc R Soc Lond B Biol Sci 265(1405): 1583–1585.CrossRefGoogle Scholar
Zeki, S., & Bartels, A. (1998b). The autonomy of the visual systems and the modularity of conscious vision. Philos Trans R Soc Lond B Biol Sci 353(1377): 1911–1914.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×