Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T23:48:15.989Z Has data issue: false hasContentIssue false

16 - What the brain teaches us about latent inhibition (LI): the neural substrates of the expression and prevention of LI

from Current topics in latent inhibition research

Published online by Cambridge University Press:  04 August 2010

Robert Lubow
Affiliation:
Tel-Aviv University
Ina Weiner
Affiliation:
Tel-Aviv University
Get access

Summary

Scores of experiments in the field of animal learning have demonstrated that conditioning to a stimulus depends not merely on its current relationship with a reinforcer, but is affected by animal's past experience with that stimulus. Latent inhibition (LI) is one case of such a biasing effect of past experience: it reflects the proactive interference of nonreinforced stimulus preexposure on the subsequent performance of a learning task involving this stimulus (Lubow,1973, 1989; Lubow, Weiner, & Schnur, 1981).

LI can be demonstrated in a variety of classical and instrumental conditioning procedures, and in many mammalian species, including humans (Lubow, 1973, 1989; Lubow et al., 1981). While a variety of behavioral tasks are used to demonstrate LI in rodents, all of them share a basic procedure. In the first stage, preexposure, animals from each of two groups are placed in an environment that will later serve as the conditioning–test apparatus. Subjects in the “stimulus preexposed” (PE) group are repeatedly exposed to a stimulus (e.g., tone) which is not followed by a significant consequence. Subjects in the “nonpreexposed” (NPE) group spend an equivalent amount of time in the apparatus without receiving the stimulus. When the preexposure stage is completed, either immediately, or a certain time later, all of the subjects enter the conditioning stage, in which the preexposed stimulus is paired with a reinforcer over a number of trials. Performance is assessed by examining some behavioral index of conditioned responding, either during the conditioning stage or in a third, test stage.

Type
Chapter
Information
Latent Inhibition
Cognition, Neuroscience and Applications to Schizophrenia
, pp. 372 - 416
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackil, J., Mellgren, R. L., Halgren, C., & Frommer, S. P. (1969). Effects of CS preexposure on avoidance learning in rats with hippocampal lesions. Journal of Comparative and Physiological Psychology, 69, 739–747.CrossRefGoogle Scholar
Aggleton, J. P., Neave, N., Nagle, S., & Sahgal, A. (1995). A comparison of the effects of medial prefrontal, cingulate cortex, and cingulum bundle lesions on tests of spatial memory: evidence of a double dissociation between frontal and cingulum bundle contributions. The Journal of Neuroscience, 15, 7270–7281.CrossRefGoogle ScholarPubMed
Angrist, B., Rotrosen, J., & Gershon, S. (1980). Responses to apomorphine, amphetamine, and neuroleptics in schizophrenic subjects. Psychopharmacology (Berl.), 67, 31–38.CrossRefGoogle ScholarPubMed
Angrist, B., Sathananthan, G., Wilk, S., & Gershon, S. (1974). Amphetamine psychosis: behavioral and biochemical aspects. Journal of Psychiatric Research, 11, 13–23.CrossRefGoogle ScholarPubMed
Angrist, B. M., Shopsin, B., & Gershon, S. (1971). Comparative psychotomimetic effects of stereoisomers of amphetamine. Nature, 234, 152–153.CrossRefGoogle ScholarPubMed
Anscombe, R. (1987). The disorder of consciousness in schizophrenia. Schizophrenia Bulletin, 13, 241–260.CrossRefGoogle Scholar
Arnt, J., & Skarsfeldt, T. (1998). Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology, 18, 63–101.CrossRefGoogle Scholar
Asarnow, R. F., Marder, S. R., Mintz, J., Putten, T., & Zimmerman, K. E. (1988). Differential effect of low and conventional doses of fluphenazine on schizophrenic outpatients with good or poor information-processing abilities. Archives of General Psychiatry, 45, 822–826.CrossRefGoogle ScholarPubMed
Bakshi, V. P., Geyer, M. A., Taaid, N., & Swerdlow, N. R. (1995). A comparison of the effects of amphetamine, strychnine and caffeine on prepulse inhibition and latent inhibition. Behavioural Pharmacology, 6, 801–809.CrossRefGoogle ScholarPubMed
Baruch, I., Hemsley, D. R., & Gray, J. A. (1988a). Differential performance of acute and chronic schizophrenics in a latent inhibition task. The Journal of Nervous and Mental Disease, 176, 598–606.CrossRefGoogle Scholar
Baruch, I., Hemsley, D. R., & Gray, J. A. (1988b). Latent inhibition and ‘psychotic proneness’ in normal subjects. Personality and Individual Differences, 9, 777–783.CrossRefGoogle Scholar
Bassareo, V., & Di Chiara, G. (1999). Differential responsiveness of dopamine transmission to food-stimuli in nucleus accumbens shell/core compartments. Neuroscience, 89, 637–641.CrossRefGoogle ScholarPubMed
Baxter, M. G., Parker, A., Lindner, C. C., Izquierdo, A. D., & Murray, E. A. (2000). Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. The Journal of Neuroscience, 20, 4311–4319.CrossRefGoogle ScholarPubMed
Beckmann, H., & Jakob, H. (1991). Prenatal disturbances of nerve cell migration in the entorhinal region: a common vulnerability factor in functional psychoses?Journal of Neural Transmission. General Section, 84, 155–164.CrossRefGoogle ScholarPubMed
Berendse, H. W., Groenewegen, H. J., & Lohman, A. H. (1992). Compartmental distribution of ventral striatal neurons projecting to the mesencephalon in the rat. The Journal of Neuroscience, 12, 2079–2103.CrossRefGoogle ScholarPubMed
Birrell, J. M., & Brown, V. J. (2000). Medial frontal cortex mediates perceptual attentional set shifting in the rat. The Journal of Neuroscience, 20, 4320–4324.CrossRefGoogle ScholarPubMed
Bleuler, M. (1911). Dementia Praecox or the Group of Schizophrenias. New York: International Universities Press.Google Scholar
Bogerts, B. (1991). The neuropathology of schizophrenia: pathophysiological and neurodevelopmental implications. In Mednick, S. A., Cannon, T. D., Barr, C. E. & Lyon, M. (Eds.), Fetal Neural Development and Adult Schizophrenia. Cambridge: Cambridge University Press, pp. 153–173.Google Scholar
Bogerts, B. (1993). Recent advances in the neuropathology of schizophrenia. Schizophrenia Bulletin, 19, 431–445.CrossRefGoogle ScholarPubMed
Bogerts, B., Meertz, E., & Schonfeldt-Bausch, R. (1985). Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage. Archives of General Psychiatry, 42, 784–791.CrossRefGoogle ScholarPubMed
Bouton, M. E. (1993). Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychological Bulletin, 114, 80–99.CrossRefGoogle ScholarPubMed
Braff, D. L., & Saccuzzo, D. P. (1982). Effect of antipsychotic medication on speed of information processing in schizophrenic patients. American Journal of Psychiatry, 139, 1127–1130.Google ScholarPubMed
Braunstein-Bercovitz, H., & Lubow, R. E. (1998). Are high-schizotypal normal participants distractible or limited in attentional resources? A study of latent inhibition as a function of masking task load and schizotypy level. Journal of Abnormal Psychology, 107, 659–670.CrossRefGoogle ScholarPubMed
Broen, W. E. (1968). Schizophrenia: Research and Theory. New York: Academic Press.Google Scholar
Broersen, L. M., Feldon, J., & Weiner, I. (1999). Dissociative effects of apomorphine infusions into the medial prefrontal cortex of rats on latent inhibition, prepulse inhibition and amphetamine-induced locomotion. Neuroscience, 94, 39–46.CrossRefGoogle ScholarPubMed
Broersen, L. M., Heinsbroek, R. P., Bruin, J. P., & Olivier, B. (1996). Effects of local application of dopaminergic drugs into the medial prefrontal cortex of rats on latent inhibition. Biological Psychiatry, 40, 1083–1090.CrossRefGoogle ScholarPubMed
Brown, V. J., & Bowman, E. M. (2002). Rodent models of prefrontal cortical function. Trends in Neurosciences, 25, 340–343.CrossRefGoogle ScholarPubMed
Buhusi, C. V., Gray, J. A., & Schmajuk, N. A. (1998). Perplexing effects of hippocampal lesions on latent inhibition: a neural network solution. Behavioral Neuroscience, 112, 316–351.CrossRefGoogle ScholarPubMed
Cadoni, C., Solinas, M., & Di Chiara, G. (2000). Psychostimulant sensitization: differential changes in accumbal shell and core dopamine. European Journal of Pharmacology, 388, 69–76.CrossRefGoogle ScholarPubMed
Cador, M., Robbins, T. W., Everitt, B. J., et al. (1991). Limbic-striatal interactions in reward-related processes: modulation by the dopaminergic system. In Willner, P. & Scheel-Kruger, J. (Eds.), The Mesolimbic Dopamine System: From Motivation to Action. Chichester: John Wiley, pp. 225–250.Google Scholar
Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002). Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience & Biobehavioral Reviews, 26, 321–352.CrossRefGoogle ScholarPubMed
Carlsson, M., & Carlsson, A. (1990). Schizophrenia: a subcortical neurotransmitter imbalance syndrome?Schizophrenia Bulletin, 16, 425–432.CrossRefGoogle ScholarPubMed
Cassaday, H. J., Mitchell, S. N., Williams, J. H., & Gray, J. A. (1993). 5,7-Dihydroxytryptamine lesions in the fornix-fimbria attenuate latent inhibition. Behavioral and Neural Biology, 59, 194–207.CrossRefGoogle ScholarPubMed
Christison, G. W., Atwater, G. E., Dunn, L. A., & Kilts, C. D. (1988). Haloperidol enhancement of latent inhibition: relation to therapeutic action?Biological Psychiatry, 23, 746–749.CrossRefGoogle ScholarPubMed
Clark, A. J., Feldon, J., & Rawlins, J. N. (1992). Aspiration lesions of rat ventral hippocampus disinhibit responding in conditioned suppression or extinction, but spare latent inhibition and the partial reinforcement extinction effect. Neuroscience, 48, 821–829.CrossRefGoogle ScholarPubMed
Cools, A. R., Coolen, J. M., Smit, J. C., & Ellenbroek, B. A. (1984). The striato-nigro-collicular pathway and explosive running behaviour: functional interaction between neostriatal dopamine and collicular GABA. European Journal of Pharmacology, 100, 71–77.CrossRefGoogle ScholarPubMed
Cornblatt, B., & Erlenmeyer-Kimling, L. (1984). Early attentional predictors of adolescent behavioral disturbances in children at risk for schizophrenia. In Watt, N. F., Anthony, E. F., Wynne, L. C., & Rolf, J. E. (Eds.), Children at Risk for Schizophrenia: A Longitudinal Perspective. New York: Cambridge University Press.Google Scholar
Cornblatt, B. A., Lenzenweger, M. F., Dworkin, R. H., & Erlenmeyer-Kimling, L. (1985). Positive and negative schizophrenic symptoms, attention, and information processing. Schizophrenia Bulletin, 11, 397–408.CrossRefGoogle ScholarPubMed
Cornblatt, B., Winters, L., & Erlenmeyer-Kimling, L. (1989). Attentional markers of schizophrenia: evidence from the New York high-risk study. In Schulz, S. C. & Tamminga, C. A. (Eds.), Schizophrenia: Scientific Progress. New York: Oxford University Press, pp. 83–92.Google Scholar
Coutureau, E., Blundell, P. J., & Killcross, S. (2001). Basolateral amygdala lesions disrupt latent inhibition in rats. Brain Research Bulletin, 56, 49–53.CrossRefGoogle Scholar
Coutureau, E., Galani, R., Gosselin, O., Majchrzak, M., & Di Scala, G. (1999). Entorhinal but not hippocampal or subicular lesions disrupt latent inhibition in rats. Neurobiology of Learning and Memory, 72, 143–157.CrossRefGoogle ScholarPubMed
Coutureau, E., Gosselin, O., & Di Scala, G. (2000). Restoration of latent inhibition by olanzapine but not haloperidol in entorhinal cortex-lesioned rats. Psychopharmacology (Berl.), 150, 226–232.CrossRefGoogle Scholar
Coutureau, E., Lena, I., Dauge, V., & Di, S. G. (2002). The entorhinal cortex-nucleus accumbens pathway and latent inhibition: a behavioral and neurochemical study in rats. Behavioral Neuroscience, 116, 95–104.CrossRefGoogle ScholarPubMed
Csernansky, J. G., Murphy, G. M., & Faustman, W. O. (1991). Limbic/mesolimbic connections and the pathogenesis of schizophrenia. Biological Psychiatry, 30, 383–400.CrossRefGoogle ScholarPubMed
Bruin, J. P., Sanchez-Santed, F., Heinsbroek, R. P., Donker, A., & Postmes, P. (1994). A behavioural analysis of rats with damage to the medial prefrontal cortex using the Morris water maze: evidence for behavioural flexibility, but not for impaired spatial navigation. Brain Research, 652, 323–333.CrossRefGoogle Scholar
Casa, L. G., & Lubow, R. E. (1994). Memory for attended and nominally unattended stimuli in low and high psychotic-prone normal subjects: the effects of test-anticipation. Personality and Individual Differences, 17, 783–789.CrossRefGoogle Scholar
Casa, L. G., Ruiz, G., & Lubow, R. E. (1993). Latent inhibition and recall/recognition of irrelevant stimuli as a function of pre-exposure duration in high and low psychotic-prone normal subjects. British Journal of Psychology, 84, 119–132.CrossRefGoogle ScholarPubMed
Della Casa, V., Hofer, I., Weiner, I., & Feldon, J. (1999). Effects of smoking status and schizotypy on latent inhibition. Journal of Psychopharmacology, 13, 45–57.CrossRefGoogle ScholarPubMed
Deutch, A. Y. (1993). Prefrontal cortical dopamine systems and the elaboration of functional corticostriatal circuits: implications for schizophrenia and Parkinson's disease. Journal of Neural Transmission. General Section, 91, 197–221.CrossRefGoogle ScholarPubMed
Deutch, A. Y., & Cameron, D. S. (1992). Pharmacological characterization of dopamine systems in the nucleus accumbens core and shell. Neuroscience, 46, 49–56.CrossRefGoogle ScholarPubMed
Di Chiara, G. (1995). The role of dopamine in drug abuse viewed from the perspective of its role in motivation. Drug and Alcohol Dependence, 38, 95–137.CrossRefGoogle ScholarPubMed
Dias, R., & Aggleton, J. P. (2000). Effects of selective excitotoxic prefrontal lesions on acquisition of nonmatching- and matching-to-place in the T-maze in the rat: differential involvement of the prelimbic-infralimbic and anterior cingulate cortices in providing behavioural flexibility. The European Journal of Neuroscience, 12, 4457–4466.CrossRefGoogle ScholarPubMed
Dias, R., Robbins, T. W., & Roberts, A. C. (1996). Dissociation in prefrontal cortex of affective and attentional shifts. Nature, 380, 69–72.CrossRefGoogle ScholarPubMed
Dias, R., Robbins, T. W., & Roberts, A. C. (1997). Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: restriction to novel situations and independence from “on-line” processing. The Journal of Neuroscience, 17, 9285–9297.CrossRefGoogle ScholarPubMed
Dunn, L. A., Atwater, G. E., & Kilts, C. D. (1993). Effects of antipsychotic drugs on latent inhibition: sensitivity and specificity of an animal behavioral model of clinical drug action. Psychopharmacology (Berl.), 112, 315–323.CrossRefGoogle ScholarPubMed
Ellenbroek, B. A., Budde, S., & Cools, A. R. (1996). Prepulse inhibition and latent inhibition: the role of dopamine in the medial prefrontal cortex. Neuroscience, 75, 535–542.CrossRefGoogle ScholarPubMed
Ellenbroek, B. A., & Cools, A. R. (1990). Animal models with construct validity for schizophrenia. Behavioural Pharmacology, 1, 469–490.CrossRefGoogle Scholar
Ellenbroek, B. A., Knobbout, D. A., & Cools, A. R. (1997). The role of mesolimbic and nigrostriatal dopamine in latent inhibition as measured with the conditioned taste aversion paradigm. Psychopharmacology (Berl.), 129, 112–120.CrossRefGoogle ScholarPubMed
Everitt, B., & Robbins, T. W. (1992). Amygdala-ventral striatal interactions and reward-related processes. In Aggleton, J. P. (Ed.), The Amygdala. Neurobiological Aspects of Emotion, Memory and Mental Dysfunction. Oxford: John Wiley and Sons, pp. 401–429.Google Scholar
Fanselow, M. S., & LeDoux, J. E. (1999). Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron, 23, 229–232.CrossRefGoogle ScholarPubMed
Feldon, J., & Weiner, I. (1991). Effects of haloperidol on the multitrial partial reinforcement extinction effect (PREE): evidence for neuroleptic drug action on nonreinforcement but not on reinforcement. Psychopharmacology (Berl.), 105, 407–414.CrossRefGoogle Scholar
Fendt, M., & Fanselow, M. S. (1999). The neuroanatomical and neurochemical basis of conditioned fear. Neuroscience & Biobehavioral Reviews, 23, 743–760.CrossRefGoogle ScholarPubMed
Floresco, S. B., Blaha, C. D., Yang, C. R., & Phillips, A. G. (2001). Modulation of hippocampal and amygdalar-evoked activity of nucleus accumbens neurons by dopamine: cellular mechanisms of input selection. The Journal of Neuroscience, 21, 2851–2860.CrossRefGoogle ScholarPubMed
Frey, P. W., & Sears, R. G. (1978). Model of conditioning incorporating the Rescorla-Wagner associative axiom, a dynamic attention process, and a catastrophe rule. Psychological Review, 85, 321–341.CrossRefGoogle Scholar
Frith, C. D. (1979). Consciousness, information processing and schizophrenia. The British Journal of Psychiatry, 134, 225–235.CrossRefGoogle Scholar
Gal, G. (2000). Disrupted and undisruptable latent inhibition following shell and core lesions: the dual role of the nucleus accumbens in latent inhibition. Tel Aviv University, Tel Aviv.Google Scholar
Gal, G., Schiller, D., & Weiner, I. (2005). Latent inhibition is disrupted by nucleus accumbens shell lesion but is abnormally persistent following entire nucleus accumbens lesion: the neural site controlling the expression and disruption of the stimulus preexposure effect. Behavioural Brain Research, 162, 246–255.CrossRefGoogle ScholarPubMed
Gallagher, M., & Chiba, A. A. (1996). The amygdala and emotion. Current Opinion in Neurobiology, 6, 221–227.CrossRefGoogle ScholarPubMed
Gallagher, M., McMahan, R. W., & Schoenbaum, G. (1999). Orbitofrontal cortex and representation of incentive value in associative learning. The Journal of Neuroscience, 19, 6610–6614.CrossRefGoogle ScholarPubMed
Gallagher, M., & Schoenbaum, G. (1999). Functions of the amygdala and related forebrain areas in attention and cognition. Annals of the New York Academy of Sciences, 877, 397–411.CrossRefGoogle ScholarPubMed
Gelissen, M., & Cools, A. (1988). Effect of intracaudate haloperidol and apomorphine on switching motor patterns upon current behaviour of cats. Behavioural Brain Research, 29, 17–26.CrossRefGoogle ScholarPubMed
Gjerde, P. F. (1983). Attentional capacity dysfunction and arousal in schizophrenia. Psychological Bulletin, 93, 57–72.CrossRefGoogle Scholar
Gosselin, G., Oberling, P., & Di Scala, G. (1996). Antagonism of amphetamine-induced disruption of latent inhibition by the atypical antipsychotic olanzapine in rats. Behavioural Pharmacology, 7, 820–826.Google ScholarPubMed
Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience, 41, 1–24.CrossRefGoogle ScholarPubMed
Grace, A. A. (2000). Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Research. Brain Research Reviews, 31, 330–341.CrossRefGoogle ScholarPubMed
Gray, J. A., Feldon, J., Rawlins, J. N. P., Hemsley, D. R., & Smith, A. D. (1991). The neuropsychology of schizophrenia. Behavioral and Brain Sciences, 14, 1–20.CrossRefGoogle Scholar
Gray, J. A., Joseph, M. H., Hemsley, D. R., et al. (1995a). The role of mesolimbic dopaminergic and retrohippocampal afferents to the nucleus accumbens in latent inhibition: implications for schizophrenia. Behavioural Brain Research, 71, 19–31.CrossRefGoogle Scholar
Gray, J. A., Moran, P. M., Grigoryan, G., et al. (1997). Latent inhibition: the nucleus accumbens connection revisited. Behavioural Brain Research, 88, 27–34.CrossRefGoogle ScholarPubMed
Gray, N. S., Hemsley, D. R., & Gray, J. A. (1992a). Abolition of latent inhibition in acute, but not chronic schizophrenics. Neurology, Psychiatry and Brain Research, 1, 83–89.Google Scholar
Gray, N. S., Pickering, A. D., Hemsley, D. R., Dawling, S., & Gray, J. A. (1992b). Abolition of latent inhibition by a single 5 mg dose of d-amphetamine in man. Psychopharmacology (Berl.), 107, 425–430.CrossRefGoogle ScholarPubMed
Gray, N. S., Pilowsky, L. S., Gray, J. A., & Kerwin, R. W. (1995b). Latent inhibition in drug naive schizophrenics: relationship to duration of illness and dopamine D2 binding using SPET. Schizophrenia Research, 17, 95–107.CrossRefGoogle ScholarPubMed
Groenewegen, H. J., Berendse, H. W., Meredith, G. E., et al. (1991). Functional anatomy of the ventral, limbic system-innervated striatum. In Willner, P. & Scheel-Kruger, J. (Eds.), The Mesolimbic Dopamine System: From Motivation to Action. Chichester: John Wiley, pp. 19–60.Google Scholar
Groenewegen, H. J., Vermeulen-Van der Zee, E., te Kortschot, A., & Witter, M. P. (1987). Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin. Neuroscience, 23, 103–120.CrossRefGoogle Scholar
Groenewegen, H. J., Wright, C. I., & Beijer, A. V. (1996). The nucleus accumbens: gateway for limbic structures to reach the motor system?Progress in Brain Research, 107, 485–511.CrossRefGoogle ScholarPubMed
Groenewegen, H. J., Wright, C. I., Beijer, A. V., & Voorn, P. (1999). Convergence and segregation of ventral striatal inputs and outputs. Annals of the New York Academy of Sciences, 877, 49–63.CrossRefGoogle ScholarPubMed
Hall, G., & Channell, S. (1985). Latent inhibition and conditioning after pre-exposure to the training context. Learning and Motivation, 16, 381–397.CrossRefGoogle Scholar
Hall, R. C., Popkin, M. K., Beresford, T. P., & Hall, A. K. (1988). Amphetamine psychosis: Clinical presentations and differential diagnosis. Psychiatric Medicine, 6, 73–79.Google ScholarPubMed
Han, J. S., Gallagher, M., & Holland, P. (1995). Hippocampal lesions disrupt decrements but not increments in conditioned stimulus processing. The Journal of Neuroscience, 15, 7323–7329.CrossRefGoogle Scholar
Harrison, P. J. (1999). The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain, 122, 593–624.CrossRefGoogle ScholarPubMed
Hatfield, T., Han, J. S., Conley, M., Gallagher, M., & Holland, P. (1996). Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. The Journal of Neuroscience, 16, 5256–5265.CrossRefGoogle Scholar
Heimer, L., Alheid, G. F., Olmos, J. S., et al. (1997). The accumbens: Beyond the core-shell dichotomy. The Journal of Neuropsychiatry and Clinical Neurosciences, 9, 354–381.Google ScholarPubMed
Hemsley, D. R. (1993). A simple (or simplistic?) cognitive model for schizophrenia. Behaviour Research and Therapy, 31, 633–645.CrossRefGoogle Scholar
Hemsley, D. R. (1994). Cognitive disturbance as the link between schizophrenic symptoms and their biological bases. Neurology Psychiatry and Brain Research, 2, 163–170.Google Scholar
Holland, P. C., & Gallagher, M. (1999). Amygdala circuitry in attentional and representational processes. Trends in Cognitive Sciences, 3, 65–73.CrossRefGoogle ScholarPubMed
Holt, W., & Maren, S. (1999). Muscimol inactivation of the dorsal hippocampus impairs contextual retrieval of fear memory. The Journal of Neuroscience, 19, 9054–9062.CrossRefGoogle ScholarPubMed
Honey, R. C., & Good, M. (1993). Selective hippocampal lesions abolish the contextual specificity of latent inhibition and conditioning. Behavioral Neuroscience, 107, 23–33.CrossRefGoogle ScholarPubMed
Howland, J. G., Taepavarapruk, P., & Phillips, A. G. (2002). Glutamate receptor-dependent modulation of dopamine efflux in the nucleus accumbens by basolateral, but not central, nucleus of the amygdala in rats. The Journal of Neuroscience, 22, 1137–1145.CrossRefGoogle Scholar
Hutcheson, D. M., Parkinson, J. A., Robbins, T. W., & Everitt, B. J. (2001). The effects of nucleus accumbens core and shell lesions on intravenous heroin self-administration and the acquisition of drug-seeking behaviour under a second-order schedule of heroin reinforcement. Psychopharmacology (Berl.), 153, 464–472.CrossRefGoogle Scholar
Ikemoto, S., & Panksepp, J. (1999). The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Research. Brain Research Reviews, 31, 6–41.CrossRefGoogle ScholarPubMed
Ito, R., Dalley, J. W., Howes, S. R., Robbins, T. W., & Everitt, B. J. (2000). Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. The Journal of Neuroscience, 20, 7489–7495.CrossRefGoogle ScholarPubMed
Jakob, H., & Beckmann, H. (1986). Prenatal developmental disturbances in the limbic allocortex in schizophrenics. Journal of Neural Transmission, 65, 303–326.CrossRefGoogle ScholarPubMed
Janowsky, D. S., & Davis, J. M. (1976). Methylphenidate, dextroamphetamine, and levamfetamine. Effects on schizophrenic symptoms. Archives of General Psychiatry, 33, 304–308.CrossRefGoogle ScholarPubMed
Jeanblanc, J., Hoeltzel, A., & Louilot, A. (2003). Differential involvement of dopamine in the anterior part and posterior parts of the striatum in latent inhibition. Neuroscience, 118, 233–241.CrossRef
Jeanblanc, J., Hoeltzel, A., & Louilot, A. (2002). Dissociation in the involvement of dopaminergic neurons innervating the core and shell subregions of the nucleus accumbens in latent inhibition and affective perception. Neuroscience, 111, 315–323.CrossRefGoogle ScholarPubMed
Jeanblanc, J., Peterschmitt, Y., Hoeltzel, A., & Louilot, A. (2004). Influence of the entorhinal cortex on accumbal and striatal dopaminergic responses in a latent inhibition paradigm. Neuroscience, 128, 187–200.CrossRefGoogle Scholar
Joel, D., Weiner, I., & Feldon, J. (1997). Electrolytic lesions of the medial prefrontal cortex in rats disrupt performance on an analog of the Wisconsin Card Sorting Test, but do not disrupt latent inhibition: Implications for animal models of schizophrenia. Behavioural Brain Research, 85, 187–201.CrossRefGoogle Scholar
Jongen-Relo, A. L., Kaufmann, S., & Feldon, J. (2002). A differential involvement of the shell and core subterritories of the nucleus accumbens of rats in attentional processes. Neuroscience, 111, 95–109.CrossRefGoogle ScholarPubMed
Joseph, M. H., Peters, S. L., Moran, P. M., et al. (2000). Modulation of latent inhibition in the rat by altered dopamine transmission in the nucleus accumbens at the time of conditioning. Neuroscience, 101, 921–930.CrossRefGoogle ScholarPubMed
Kapur, S. (2003). Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. The American Journal of Psychiatry, 160, 13–23.CrossRefGoogle Scholar
Kapur, S., Mizrahi, R., & Li, M. (2005). From dopamine to salience to psychosis – linking biology, pharmacology and phenomenology of psychosis. Schizophrenia Research, 79, 59–68.CrossRefGoogle Scholar
Kaye, H., & Pearce, J. M. (1987a). Hippocampal lesions attenuate latent inhibition and the decline of the orienting response in rats. The Quarterly Journal of Experimental Psychology. B, Comparative and Physiological Psychology, 39, 107–125.Google ScholarPubMed
Kaye, H., & Pearce, J. M. (1987b). Hippocampal lesions attenuate latent inhibition of a CS and of a neutral stimulus. Psychobiology, 15, 293–299.Google Scholar
Kelley, A. E., Smith-Roe, S. L., & Holahan, M. R. (1997). Response-reinforcement learning is dependent on N-methyl-D-aspartate receptor activation in the nucleus accumbens core. Proceedings of the National Academy of Sciences of the United States of America, 94, 12174–12179.CrossRefGoogle ScholarPubMed
Kesner, R. P. (2000). Subregional analysis of mnemonic functions of the prefrontal cortex in the rat. Psychobiology, 28, 219–228.Google Scholar
Killcross, A. S., Dickinson, A., & Robbins, T. W. (1994a). Amphetamine-induced disruptions of latent inhibition are reinforcer mediated: implications for animal models of schizophrenic attentional dysfunction. Psychopharmacology (Berl.), 115, 185–195.CrossRefGoogle ScholarPubMed
Killcross, A. S., Dickinson, A., & Robbins, T. W. (1994b). Effects of the neuroleptic alpha-flupenthixol on latent inhibition in aversively- and appetitively-motivated paradigms: evidence for dopamine-reinforcer interactions. Psychopharmacology (Berl.), 115, 196–205.CrossRefGoogle ScholarPubMed
Killcross, A. S., & Robbins, T. W. (1993). Differential effects of intra-accumbens and systemic amphetamine on latent inhibition using an on-baseline, within-subject conditioned suppression paradigm. Psychopharmacology (Berl.), 110, 479–489.CrossRefGoogle ScholarPubMed
Kinon, B. J., & Lieberman, J. A. (1996). Mechanisms of action of atypical antipsychotic drugs: a critical analysis. Psychopharmacology (Berl.), 124, 2–34.CrossRefGoogle ScholarPubMed
Kolb, B. (1984). Functions of the frontal cortex of the rat: a comparative review. Brain Research, 320, 65–98.CrossRefGoogle ScholarPubMed
Konstandi, M., & Kafetzopoulos, E. (1993). Effects of striatal or accumbens lesions on the amphetamine-induced abolition of latent inhibition. Pharmacology, Biochemistry, and Behavior, 44, 751–754.CrossRefGoogle ScholarPubMed
Koob, G. F., Riley, S. J., Smith, S. C., & Robbins, T. W. (1978). Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. Journal of Comparative and Physiological Psychology, 92, 917–927.CrossRefGoogle ScholarPubMed
Kornetsky, C. (1972). The use of a simple test of attention as a measure of drug effects in schizophrenic patients. Psychopharmacologia, 24, 99–106.CrossRefGoogle ScholarPubMed
Kovelman, J. A., & Scheibel, A. B. (1984). A neurohistological correlate of schizophrenia. Biological Psychiatry, 19, 1601–1621.Google ScholarPubMed
Kraepeline, E. (1919). Dementia Praecox and Paraphrenia. New York: Kreiger.Google Scholar
Krystal, J. H., D'Souza, D. C., Mathalon, D., et al. (2003). NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl.), 169, 215–233.CrossRefGoogle Scholar
Lacroix, L., Broersen, L. M., Feldon, J., & Weiner, I. (2000). Effects of local infusions of dopaminergic drugs into the medial prefrontal cortex of rats on latent inhibition, prepulse inhibition and amphetamine induced activity. Behavioural Brain Research, 107, 111–121.CrossRefGoogle ScholarPubMed
Lacroix, L., Broersen, L. M., Weiner, I., & Feldon, J. (1998). The effects of excitotoxic lesion of the medial prefrontal cortex on latent inhibition, prepulse inhibition, food hoarding, elevated plus maze, active avoidance and locomotor activity in the rat. Neuroscience, 84, 431–442.CrossRefGoogle ScholarPubMed
Lacroix, L., Spinelli, S., White, W., & Feldon, J. (2000). The effects of ibotenic acid lesions of the medial and lateral prefrontal cortex on latent inhibition, prepulse inhibition and amphetamine-induced hyperlocomotion. Neuroscience, 97, 459–468.CrossRefGoogle ScholarPubMed
Moal, M., & Simon, H. (1991). Mesocorticolimbic dopaminergic network: Functional and regulatory roles. Physiological Reviews, 71, 155–234.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (1992). Brain mechanisms of emotion and emotional learning. Current Opinion in Neurobiology, 2, 191–197.CrossRefGoogle ScholarPubMed
Lewis, M. C., & Gould, T. J. (2007a). Reversible inactivation of the entorhinal cortex disrupts the establishment and expression of latent inhibition of cued fear conditioning in C57BL/6 mice. Hippocampus, 17, 462–470.CrossRefGoogle ScholarPubMed
Lewis, M. C., & Gould, T. J. (2007b). Signal transduction mechanisms within the entorhinal cortex that support latent inhibition of cued fear conditioning. Neurobiology of Learning and Memory, 88, 359–368.CrossRefGoogle ScholarPubMed
Lieberman, J. A., Kane, J. M., & Alvir, J. (1987). Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology (Berl.), 91, 415–433.CrossRefGoogle Scholar
Lieberman, J. A., Kane, J. M., Gadaleta, D., et al. (1984). Methylphenidate challenge as a predictor of relapse in schizophrenia. The American Journal of Psychiatry, 141, 633–638.Google Scholar
Lipp, O. V., & Vaitl, D. (1992). Latent inhibition in human Pavlovian differential conditioning – effect of additional stimulation after preexposure and relation to schizotypal traits. Personality and Individual Differences, 13, 1003–1012.CrossRefGoogle Scholar
Louilot, A., & Besson, C. (2000). Specificity of amygdalostriatal interactions in the involvement of mesencephalic dopaminergic neurons in affective perception. Neuroscience, 96, 73–82.CrossRefGoogle ScholarPubMed
Lubow, R. E. (1973). Latent inhibition. Psychological Bulletin, 79, 398–407.CrossRefGoogle ScholarPubMed
Lubow, R. E. (1989). Latent Inhibition and Conditioned Attention Theory. New York: Cambridge University Press.CrossRefGoogle Scholar
Lubow, R. E. (2005). Construct validity of the animal latent inhibition model of selective attention deficits in schizophrenia. Schizophrenia Bulletin, 31, 139–153.CrossRefGoogle Scholar
Lubow, R. E., & Casa, G. (2002). Latent inhibition as a function of schizotypality and gender: implications for schizophrenia. Biological Psychiatry, 59, 69–86.CrossRefGoogle Scholar
Lubow, R. E., & Gewirtz, J. C. (1995). Latent inhibition in humans: data, theory, and implications for schizophrenia. Psychological Bulletin. 117(1), 87–103.CrossRefGoogle Scholar
Lubow, R. E., Ingberg-Sachs, Y., Zalstein-Orda, N., & Gewirtz, J. C. (1992). Latent inhibition in low and high “psychotic-prone” normal subjects. Personality and Individual Differences, 13, 563–572.CrossRefGoogle Scholar
Lubow, R. E., Kaplan, O., Abramovich, P., Rudnick, A., & Laor, N. (2000). Visual search in schizophrenia: latent inhibition and novel pop-out effects. Schizophrenia Research, 45, 145–156.CrossRefGoogle ScholarPubMed
Lubow, R. E., Kaplan, O., & Casa, G. (2001). Performance on the visual search analog of latent inhibition is modulated by an interaction between schizotypy and gender. Schizophrenia Research, 52, 275–287.CrossRefGoogle ScholarPubMed
Lubow, R. E., Weiner, I., Schlossberg, A., & Baruch, I. (1987). Latent inhibition and schizophrenia. Bulletin of Psychonomic Society, 25, 464–467.CrossRefGoogle Scholar
Lubow, R. E., Weiner, I., & Schnur, P. (1981). Conditioned attention theory. In Bower, G. H. (Ed.), The Psychology of Learning and Motivation, vol. 15. New York: Academic Press, pp. 1–49.Google Scholar
Lyon, M. (1991). Animal models of mania and schizophrenia. In Willner, P. (Ed.), Behavioral Models in Psychopharmacology: Theoretical, Industrial and Clinical Perspectives. Cambridge: Cambridge University Press, pp. 253–310.Google Scholar
Mackintosh, N. J. (1975). A theory of attention: variations in the associability of stimuli with reinforcement. Psychological Review, 82, 276–298.CrossRefGoogle Scholar
Magaro, P. A. (1980). Cognition in Schizophrenia and Paranoia: The Integration of Cognitive Processes. Hillsdale, NJ: Erlbaum.Google Scholar
Maher, B. A., Manschreck, T. C., & Molino, M. A. (1983). Redundancy, pause distributions and thought disorder in schizophrenia. Language and Speech, 26, 191–199.CrossRefGoogle Scholar
Maldonado-Irizarry, C. S., & Kelley, A. E. (1994). Differential behavioral effects following microinjection of an NMDA antagonist into nucleus accumbens subregions. Psychopharmacology (Berl.), 116, 65–72.CrossRefGoogle ScholarPubMed
Maldonado-Irizarry, C. S., & Kelley, A. E. (1995). Excitotoxic lesions of the core and shell subregions of the nucleus accumbens differentially disrupt body weight regulation and motor activity in rat. Brain Research Bulletin, 38, 551–559.CrossRefGoogle ScholarPubMed
Malkova, L., Gaffan, D., & Murray, E. A. (1997). Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys. The Journal of Neuroscience, 17, 6011–6020.CrossRefGoogle ScholarPubMed
Marcus, M. M., Nomikos, G. G., & Svensson, T. H. (2000). Effects of atypical antipsychotic drugs on dopamine output in the shell and core of the nucleus accumbens: role of 5-HT(2A) and alpha(1)-adrenoceptor antagonism. European Neuropsychopharmacology, 10, 245–253.CrossRefGoogle ScholarPubMed
Maren, S., & Holt, W. (2000). The hippocampus and contextual memory retrieval in Pavlovian conditioning. Behavioural Brain Research, 110, 97–108.CrossRefGoogle ScholarPubMed
McAlonan, K., & Brown, V. J. (2003). Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behavioural Brain Research, 146, 97–103.CrossRefGoogle Scholar
McCartan, D., Bell, R., Green, J. F., et al. (2001). The differential effects of chlorpromazine and haloperidol on latent inhibition in healthy volunteers. Journal of Psychopharmacology, 15, 96–104.CrossRefGoogle ScholarPubMed
McGhie, A., & Chapman, J. (1961). Disorders of attention and perception in early schizophrenia. The British Journal of Medical Psychology, 34, 103–116.CrossRefGoogle ScholarPubMed
Meltzer, H. Y., & Stahl, S. M. (1976). The dopamine hypothesis of schizophrenia: a review. Schizophrenia Bulletin, 2, 19–76.CrossRefGoogle ScholarPubMed
Mizumori, S. J., Yeshenko, O., Gill, K. M., & Davis, D. M. (2004). Parallel processing across neural systems: implications for a multiple memory system hypothesis. Neurobiology of Learning and Memory, 82, 278–298.CrossRefGoogle ScholarPubMed
Moghaddam, B., Adams, B., Verma, A., & Daly, D. (1997). Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. The Journal of Neuroscience, 17, 2921–2927.CrossRefGoogle ScholarPubMed
Moore, H., Fadel, J., Sarter, M., & Bruno, J. P. (1999). Role of accumbens and cortical dopamine receptors in the regulation of cortical acetylcholine release. Neuroscience, 88, 811–822.CrossRefGoogle ScholarPubMed
Moore, J. W., & Stickney, K. J. (1980). Formation of attentional-associative networks in real time: role of the hippocampus and implications for conditioning. Physiological Psychology, 8, 207–217.CrossRefGoogle Scholar
Moran, P. M., Fischer, T. R., Hitchcock, J. M., & Moser, P. C. (1996). Effects of clozapine on latent inhibition in the rat. Behavioural Pharmacology, 7, 42–48.CrossRefGoogle ScholarPubMed
Morgan, M. A., & LeDoux, J. E. (1995). Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behavioral Neuroscience, 109, 681–688.CrossRefGoogle ScholarPubMed
Moser, P. C., Hitchcock, J. M., Lister, S., & Moran, P. M. (2000). The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Research. Brain Research Reviews, 33, 275–307.CrossRefGoogle ScholarPubMed
Mulder, A. B., Hodenpijl, M. G., & Lopes da Silva, F. H. (1998). Electrophysiology of the hippocampal and amygdaloid projections to the nucleus accumbens of the rat: convergence, segregation, and interaction of inputs. The Journal of Neuroscience, 18, 5095–5102.CrossRefGoogle ScholarPubMed
Murphy, C. A., Pezze, M., Feldon, J., & Heidbreder, C. (2000). Differential involvement of dopamine in the shell and core of the nucleus accumbens in the expression of latent inhibition to an aversively conditioned stimulus. Neuroscience, 97, 469–477.CrossRefGoogle Scholar
Nuechterlein, K. H., & Dawson, M. E. (1984). Information processing and attentional functioning in the developmental course of schizophrenic disorders. Schizophrenia Bulletin, 10, 160–203.CrossRefGoogle ScholarPubMed
O'Donnell, P., & Grace, A. A. (1998). Dysfunctions in multiple interrelated systems as the neurobiological bases of schizophrenic symptom clusters. Schizophrenia Bulletin, 24, 267–283.CrossRefGoogle ScholarPubMed
Oades, R. D. (1982). Attention and Schizophrenia: Neurobiological Bases. London: Pitman.Google Scholar
Oades, R. D. (1985). The role of noradrenaline in tuning and dopamine in switching between signals in the CNS. Neuroscience & Biobehavioral Reviews, 9, 261–282.CrossRefGoogle ScholarPubMed
Oswald, C. J., Yee, B. K., Rawlins, J. N., et al. (2002). The influence of selective lesions to components of the hippocampal system on the orienting [correction of orientating] response, habituation and latent inhibition. European Journal of Neuroscience, 15, 1983–1990.CrossRefGoogle ScholarPubMed
Otake, K., & Nakamura, Y. (2000). Possible pathways through which neurons of the shell of the nucleus accumbens influence the outflow of the core of the nucleus accumbens. Brain and Development, 22, S17–26.CrossRefGoogle ScholarPubMed
Parkinson, J. A., Cardinal, R. N., & Everitt, B. J. (2000). Limbic cortical-ventral striatal systems underlying appetitive conditioning. Progress in Brain Research, 126, 263–285.CrossRefGoogle ScholarPubMed
Parkinson, J. A., Olmstead, M. C., Burns, L. H., Robbins, T. W., & Everitt, B. J. (1999). Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. The Journal of Neuroscience, 19, 2401–2411.CrossRefGoogle ScholarPubMed
Payne, R. W. (1966). The measurement and significance of overinclusive thinking and retardation in schizophrenic patients. In Hoch, P. & Zubin, J. (Eds.), Psychopathology of Schizophrenia. New York: Grune and Stratton.Google Scholar
Pearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87, 532–552.CrossRefGoogle Scholar
Pennartz, C. M., Groenewegen, H. J., & Lopes da Silva, F. H. (1994). The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Progress in Neurobiology, 42, 719–761.CrossRefGoogle ScholarPubMed
Peters, S. L., & Joseph, M. H. (1993). Haloperidol potentiation of latent inhibition in rats: evidence for a critical role at conditioning rather than pre-exposure. Behavioural Pharmacology, 4, 183–186.CrossRefGoogle ScholarPubMed
Peterschmitt, Y., Hoeltzel, A., & Louilot, A. (2005). Striatal dopaminergic responses observed in latent inhibition are dependent on the hippocampal ventral subicular region. The European Journal of Neuroscience, 22, 2059–2068.CrossRefGoogle ScholarPubMed
Peterschmitt, Y., Meyer, F., & Louilot, A. (2008). Differential influence of the ventral subiculum on dopaminergic responses observed in core and dorsomedial shell subregions of the nucleus accumbens in latent inhibition. Neuroscience, 154, 898–910.CrossRefGoogle ScholarPubMed
Phillips, A. G., Ahn, S., & Howland, J. G. (2003). Amygdalar control of the mesocorticolimbic dopamine system: parallel pathways to motivated behavior. Neuroscience & Biobehavioral Reviews, 27, 543–554.CrossRefGoogle ScholarPubMed
Pickens, C. L., Saddoris, M. P., Setlow, B., et al. (2003). Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task. The Journal of Neuroscience, 23, 11078–11084.CrossRefGoogle Scholar
Pouzet, B., Veenman, C. L., Yee, B. K., Feldon, J., & Weiner, I. (1999). The effects of radiofrequency lesion or transection of the fimbria-fornix on latent inhibition in the rat. Neuroscience, 91, 1355–1368.CrossRefGoogle ScholarPubMed
Pouzet, B., Zhang, W. N., Weiner, I., Feldon, J., & Yee, B. K. (2004). Latent inhibition is spared by N-methyl-D-aspartate (NMDA)-induced ventral hippocampal lesions, but is attenuated following local activation of the ventral hippocampus by intracerebral NMDA infusion. Neuroscience, 124, 183–194.CrossRefGoogle ScholarPubMed
Purves, D., Bonardi, C., & Hall, G. (1995). Enhancement of latent inhibition in rats with electrolytic lesions of the hippocampus. Behavioral Neuroscience, 109, 366–370.CrossRefGoogle ScholarPubMed
Ragozzino, M. E., Detrick, S., & Kesner, R. P. (1999). Involvement of the prelimbic-infralimbic areas of the rodent prefrontal cortex in behavioral flexibility for place and response learning. The Journal of Neuroscience, 19, 4585–4594.CrossRefGoogle ScholarPubMed
Ragozzino, M. E., Wilcox, C., Raso, M., & Kesner, R. P. (1999). Involvement of rodent prefrontal cortex subregions in strategy switching. Behavioral Neuroscience, 113, 32–41.CrossRefGoogle ScholarPubMed
Rappaport, M., Silverman, J., Hopkins, H. K., & Hall, K. (1971). Phenothiazine effects on auditory signal detection in paranoid and nonparanoid schizophrenics. Science, 174, 723–725.CrossRefGoogle ScholarPubMed
Rascle, C., Mazas, O., Vaiva, G., et al. (2001). Clinical features of latent inhibition in schizophrenia. Schizophrenia Research, 51, 149–161.CrossRefGoogle Scholar
Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: a vertebrate solution to the selection problem?Neuroscience, 89, 1009–1023.CrossRefGoogle ScholarPubMed
Reilly, S., Harley, C., & Revusky, S. (1993). Ibotenate lesions of the hippocampus enhance latent inhibition in conditioned taste aversion and increase resistance to extinction in conditioned taste preference. Behavioral Neuroscience, 107, 996–1004.CrossRefGoogle ScholarPubMed
Restivo, L., Passino, E., Middei, S., & Ammassari-Teule, M. (2002). The strain-specific involvement of nucleus accumbens in latent inhibition might depend on differences in processing configural- and cue-based information between C57BL/6 and DBA mice. Brain Research Bulletin, 57, 35–39.CrossRefGoogle ScholarPubMed
Robbins, T. W., Cador, M., Taylor, J. R., & Everitt, B. J. (1989). Limbic-striatal interactions in reward-related processes. Neuroscience & Biobehavioral Reviews, 13, 155–162.CrossRefGoogle ScholarPubMed
Robbins, T. W., & Everitt, B. J. (1982). Functional studies of the central catecholamines. International Review of Neurobiology, 23, 303–365.CrossRefGoogle ScholarPubMed
Robbins, T. W., & Everitt, B. J. (1996). Neurobehavioural mechanisms of reward and motivation. Current Opinion in Neurobiology, 6, 228–236.CrossRefGoogle ScholarPubMed
Rolls, E. T. (1996). The orbitofrontal cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351, 1433–1443; discussion 1443–1434.CrossRefGoogle ScholarPubMed
Rolls, E. T. (1999). The Brain and Emotion. Oxford: Oxford University Press.Google Scholar
Rolls, E. T. (2000a). Neurophysiology and functions of the primate amygdala, and the neural basis of emotion. In Aggleton, J. P. (Ed.), The Amygdala: A Functional Analysis. New York: Oxford University Press, pp. 447–478.Google Scholar
Rolls, E. T. (2000b). The orbitofrontal cortex and reward. Cerebral Cortex, 10, 284–294.CrossRefGoogle ScholarPubMed
Romano, A. G. (1999). Variations in CS associability and multiple unit hippocampal activity in the rabbit. Behavioural Brain Research, 103, 163–173.CrossRefGoogle Scholar
Ruob, C., Elsner, J., Weiner, I., & Feldon, J. (1997). Amphetamine-induced disruption and haloperidol-induced potentiation of latent inhibition depend on the nature of the stimulus. Behavioural Brain Research, 88, 35–41.CrossRefGoogle ScholarPubMed
Salafia, W. R., & Allan, A. M. (1980). Attenuation of latent inhibition by electrical stimulation of hippocampus. Physiology and Behavior, 24, 1047–1051.CrossRefGoogle ScholarPubMed
Salafia, W. R., & Allan, A. M. (1982). Augmentation of latent inhibition by electrical stimulation of hippocampus. Physiology and Behavior, 29, 1125–1130.CrossRefGoogle ScholarPubMed
Salgado, J. V., Hetem, L. A., Vidal, M., et al. (2000). Reduction of latent inhibition by D-amphetamine in a conditioned suppression paradigm in humans. Behavioural Brain Research, 117, 61–67.CrossRefGoogle Scholar
Schauz, C., & Koch, M. (2000). Blockade of NMDA receptors in the amygdala prevents latent inhibition of fear-conditioning. Learning and Memory, 7, 393–399.CrossRefGoogle ScholarPubMed
Schiller, D., & Weiner, I. (2004). Lesions to the basolateral amygdala and the orbitofrontal cortex but not to the medial prefrontal cortex produce an abnormally persistent latent inhibition in rats. Neuroscience, 128, 15–25.CrossRefGoogle Scholar
Schiller, D., & Weiner, I. (2005). Basolateral amygdala lesions in the rat produce an abnormally persistent latent inhibition with weak preexposure but not with context shift. Behavioural Brain Research, 163, 115–121.CrossRefGoogle Scholar
Schmajuk, N. A., Buhusi, C. V., & Gray, J. A. (1998). Psychopharmacology of latent inhibition: a neural network approach. Behavioural Pharmacology, 9, 711–730.CrossRefGoogle ScholarPubMed
Schmajuk, N. A., Cox, L., & Gray, J. A. (2001). Nucleus accumbens, entorhinal cortex and latent inhibition: a neural network model. Behavioural Brain Research, 118, 123–141.CrossRefGoogle ScholarPubMed
Schmajuk, N. A., Gray, J. A., & Lam, Y. W. (1996). Latent inhibition: a neural network approach. Journal of Experimental Psychology. Animal Behavior Processes, 22, 321–349.CrossRefGoogle ScholarPubMed
Schmajuk, N. A., Lam, Y. W., & Christiansen, B. A. (1994). Latent inhibition of the rat eyeblink response: effect of hippocampal aspiration lesions. Physiology and Behavior, 55, 597–601.CrossRefGoogle ScholarPubMed
Schmajuk, N. A., & Moore, J. W. (1985). Real-time attentional models for classical conditioning and the hippocampus. Physiological Psychology, 13, 278–290.CrossRefGoogle Scholar
Schmajuk, N. A., & Moore, J. W. (1988). The hippocampus and the classically conditioned nictitating membrane response: a realtime attentional-associative model. Psychobiology, 16, 20–35.Google Scholar
Schoenbaum, G., Nugent, S. L., Saddoris, M. P., & Setlow, B. (2002). Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. Neuroreport, 13, 885–890.CrossRefGoogle Scholar
Schoenbaum, G., & Setlow, B. (2001). Integrating orbitofrontal cortex into prefrontal theory: common processing themes across species and subdivisions. Learning and Memory, 8, 134–147.CrossRefGoogle ScholarPubMed
Schoenbaum, G., Setlow, B., Nugent, S. L., Saddoris, M. P., & Gallagher, M. (2003). Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. Learning and Memory, 10, 129–140.CrossRefGoogle ScholarPubMed
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.CrossRefGoogle ScholarPubMed
Seillier, A., Dieu, Y., Herbeaux, K., et al. (2007). Evidence for a critical role of entorhinal cortex at pre-exposure for latent inhibition disruption in rats. Hippocampus, 17, 220–226.CrossRefGoogle ScholarPubMed
Setlow, B., Gallagher, M., & Holland, P. C. (2002). The basolateral complex of the amygdala is necessary for acquisition but not expression of CS motivational value in appetitive Pavlovian second-order conditioning. European Journal of Neuroscience, 15, 1841–1853.CrossRefGoogle Scholar
Shadach, E., Feldon, J., & Weiner, I. (1999). Clozapine-induced potentiation of latent inhibition is due to its action in the conditioning stage: implications for the mechanism of action of antipsychotic drugs. The International Journal of Neuropsychopharmacology, 2, 283–291.CrossRefGoogle ScholarPubMed
Shakow, D. (1962). Segmental set. Archives of General Psychiatry, 6, 1–17.CrossRefGoogle ScholarPubMed
Shohamy, D., Allen, M. T., & Gluck, M. A. (2000). Dissociating entorhinal and hippocampal involvement in latent inhibition. Behavioral Neuroscience, 114, 867–874.CrossRefGoogle ScholarPubMed
Smith, A., Li, M., Becker, S., & Kapur, S. (2006). Dopamine, prediction error and associative learning: a model-based account. Network, 17, 61–84.CrossRefGoogle ScholarPubMed
Smith-Roe, S. L., & Kelley, A. E. (2000). Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning. The Journal of Neuroscience, 20, 7737–7742.CrossRefGoogle ScholarPubMed
Snyder, S. H. (1973). Amphetamine psychosis: A “model” schizophrenia mediated by catecholamines. The American Journal of Psychiatry, 130, 61–67.CrossRefGoogle ScholarPubMed
Snyder, S. H. (1976). The dopamine hypothesis of schizophrenia: focus on the dopamine receptor. The American Journal of Psychiatry, 133, 197–202.Google ScholarPubMed
Solomon, P. R., Crider, A., Winkelman, J. W., et al. (1981). Disrupted latent inhibition in the rat with chronic amphetamine or haloperidol-induced supersensitivity: relationship to schizophrenic attention disorder. Biological Psychiatry, 16, 519–537.Google ScholarPubMed
Solomon, P. R., & Moore, J. W. (1975). Latent inhibition and stimulus generalization of the classically conditioned nictitating membrane response in rabbits (Oryctolagus cuniculus) following dorsal hippocampal ablation. Journal of Comparative and Physiological Psychology, 89, 1192–1203.CrossRefGoogle ScholarPubMed
Solomon, P. R., & Staton, D. M. (1982). Differential effects of microinjections of d-amphetamine into the nucleus accumbens or the caudate putamen on the rat's ability to ignore an irrelevant stimulus. Biological Psychiatry, 17, 743–756.Google ScholarPubMed
Stahl, S. M. (1988). Basal ganglia neuropharmacology and obsessive-compulsive disorder: the obsessive-compulsive disorder hypothesis of basal ganglia dysfunction. Psychopharmacology Bulletin, 24, 370–374.Google ScholarPubMed
Swanson, C. J., Heath, S., Stratford, T. R., & Kelley, A. E. (1997). Differential behavioral responses to dopaminergic stimulation of nucleus accumbens subregions in the rat. Pharmacology, Biochemistry, and Behavior, 58, 933–945.CrossRefGoogle ScholarPubMed
Swerdlow, N. R., Braff, D. L., Hartston, H., Perry, W., & Geyer, M. A. (1996). Latent inhibition in schizophrenia. Schizophrenia Research, 20, 91–103.CrossRefGoogle Scholar
Swerdlow, N. R., & Koob, G. F. (1987). Dopamine, schizophrenia, mania and depression: toward a unified hypothesis of cortico-striato-pallido-thalamic function. Behavioral and Brain Sciences, 10, 197–245.CrossRefGoogle Scholar
Swerdlow, N. R., Stephany, N., Wasserman, L. C., et al. (2003). Dopamine agonists disrupt visual latent inhibition in normal males using a within-subject paradigm. Psychopharmacology (Berl.), 169, 314–320.CrossRefGoogle ScholarPubMed
Taghzouti, K., Louilot, A., Herman, J. P., Moal, M., & Simon, H. (1985). Alternation behavior, spatial discrimination, and reversal disturbances following 6-hydroxydopamine lesions in the nucleus accumbens of the rat. Behavioral and Neural Biology, 44, 354–363.CrossRefGoogle ScholarPubMed
Taghzouti, K., Simon, H., Louilot, A., Herman, J. P., & Moal, M. (1985). Behavioral study after local injection of 6-hydroxydopamine into the nucleus accumbens in the rat. Brain Research, 344, 9–20.CrossRefGoogle ScholarPubMed
Tai, C. T., Cassaday, H. J., Feldon, J., & Rawlins, J. N. (1995). Both electrolytic and excitotoxic lesions of nucleus accumbens disrupt latent inhibition of learning in rats. Neurobiology of Learning and Memory, 64, 36–48.CrossRefGoogle ScholarPubMed
Thornton, J. C., Dawe, S., Lee, C., et al. (1996). Effects of nicotine and amphetamine on latent inhibition in human subjects. Psychopharmacology (Berl.), 127, 164–173.CrossRefGoogle ScholarPubMed
Trimble, K. M., Bell, R., & King, D. J. (1997). Enhancement of latent inhibition in the rat by the atypical antipsychotic agent remoxipride. Pharmacology, Biochemistry, and Behavior, 56, 809–816.CrossRefGoogle ScholarPubMed
Trimble, K. M., Bell, R., & King, D. J. (1998). Enhancement of latent inhibition in the rat at a high dose of clozapine. Journal of Psychopharmacology, 12, 215–219.CrossRefGoogle Scholar
Trimble, K. M., Bell, R., & King, D. J. (2002). Effects of the selective dopamine D(1) antagonists NNC 01–0112 and SCH 39166 on latent inhibition in the rat. Physiology and Behavior, 77, 115–123.CrossRefGoogle ScholarPubMed
Vaitl, D., & Lipp, O. V. (1997). Latent inhibition and autonomic responses: a psychophysiological approach. Behavioural Brain Research, 88, 85–93.CrossRefGoogle ScholarPubMed
Vaitl, D., Lipp, O., Bauer, U., et al. (2002). Latent inhibition and schizophrenia: Pavlovian conditioning of autonomic responses. Schizophrenia Research, 55, 147–158.CrossRefGoogle ScholarPubMed
Bos, R., Charria Ortiz, G. A., Bergmans, A. C., & Cools, A. R. (1991). Evidence that dopamine in the nucleus accumbens is involved in the ability of rats to switch to cue-directed behaviours. Behavioural Brain Research, 42, 107–114.CrossRefGoogle ScholarPubMed
Bos, R., & Cools, A. R. (1989). The involvement of the nucleus accumbens in the ability of rats to switch to cue-directed behaviours. Life Sciences, 44, 1697–1704.Google ScholarPubMed
Kammen, D. P., Bunney, W. E., Docherty, J. P., et al. (1982). d-Amphetamine-induced heterogeneous changes in psychotic behavior in schizophrenia. The American Journal of Psychiatry, 139, 991–997.Google Scholar
Venables, P. H. (1984). Cerebral mechanisms, autonomic responsiveness, and attention in schizophrenia. Nebraska Symposium on Motivation, 31, 47–91.Google Scholar
Wagner, A. R., & Rescorla, R. A. (1972). Inhibition in Pavlovian conditioning: Application of a theory. In Boakes, R. A. & Halliday, M. A. (Eds.), Inhibition and Learning. New York: Academic Press.Google Scholar
Warburton, E. C., Joseph, M. H., Feldon, J., Weiner, I., & Gray, J. A. (1994). Antagonism of amphetamine-induced disruption of latent inhibition in rats by haloperidol and ondansetron: implications for a possible antipsychotic action of ondansetron. Psychopharmacology (Berl.), 114, 657–664.CrossRefGoogle ScholarPubMed
Warburton, E. C., Mitchell, S. N., & Joseph, M. H. (1996). Calcium dependence of sensitised dopamine release in rat nucleus accumbens following amphetamine challenge: implications for the disruption of latent inhibition. Behavioural Pharmacology, 7, 119–129.CrossRefGoogle ScholarPubMed
Weiner, I. (1990). Neural substrates of latent inhibition: the switching model. Psychological Bulletin, 108, 442–461.CrossRefGoogle ScholarPubMed
Weiner, I. (2000). The latent inhibition model of schizophrenia. In Myslobodsky, M. S. & Weiner, I. (Eds.), Contemporary Issues in Modeling Psychopathology. Dordrecht: Kluwer Academic, pp. 197–230.CrossRefGoogle Scholar
Weiner, I. (2001). Latent inhibition. In Crawley, J. N., Gerfen, C. R., Rogawski, M. A., Sibley, D. R., Skolnick, P. & Wray, S. (Eds.), Current Protocols in Neuroscience, vol. 8.13. New York: John Wiley & Sons.Google Scholar
Weiner, I. (2003). The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology (Berl.), 169, 257–297.CrossRefGoogle ScholarPubMed
Weiner, I., Bernasconi, E., Broersen, L. M., & Feldon, J. (1997). Amphetamine-induced disruption of latent inhibition depends on the nature of the stimulus. Behavioural Pharmacology, 8, 442–457.CrossRefGoogle ScholarPubMed
Weiner, I., & Feldon, J. (1987). Facilitation of latent inhibition by haloperidol in rats. Psychopharmacology (Berl.), 91, 248–253.CrossRefGoogle ScholarPubMed
Weiner, I., & Feldon, J. (1997). The switching model of latent inhibition: an update of neural substrates. Behavioural Brain Research, 88, 11–25.CrossRefGoogle ScholarPubMed
Weiner, I., Feldon, J., & Katz, Y. (1987). Facilitation of the expression but not the acquisition of latent inhibition by haloperidol in rats. Pharmacology, Biochemistry, and Behavior, 26, 241–246.CrossRefGoogle Scholar
Weiner, I., Feldon, J., Tarrasch, R., Hairston, I., & Joel, D. (1998). Fimbria-fornix cut affects spontaneous activity, two-way avoidance and delayed non matching to sample, but not latent inhibition. Behavioural Brain Research, 96, 59–70.CrossRefGoogle Scholar
Weiner, I., Gaisler, I., Schiller, D., et al. (2000). Screening of antipsychotic drugs in animal models. Drug Development Research, 50, 235–249.3.0.CO;2-R>CrossRefGoogle Scholar
Weiner, I., Gal, G., & Feldon, J. (1999). Disrupted and undisruptable latent inhibition following shell and core lesions. Annals of the New York Academy of Sciences, 877, 723–727.CrossRefGoogle ScholarPubMed
Weiner, I., Gal, G., Rawlins, J. N., & Feldon, J. (1996a). Differential involvement of the shell and core subterritories of the nucleus accumbens in latent inhibition and amphetamine-induced activity. Behavioural Brain Research, 81, 123–133.CrossRefGoogle ScholarPubMed
Weiner, I., & Joel, D. (2002). Dopamine in schizophrenia: dysfunctional information processing in basal ganglia-thalamocortical split circuits. In Di Chiara, G. (Ed.), Handbook of Experimental Pharmacology, vol. 54/II, Dopamine in the CNS II. Berlin: Springer, pp. 418–472.Google Scholar
Weiner, I., Lubow, R. E., & Feldon, J. (1981). Chronic amphetamine and latent inhibition. Behavioural Brain Research, 2, 285–286.CrossRefGoogle Scholar
Weiner, I., Lubow, R. E., & Feldon, J. (1984). Abolition of the expression but not the acquisition of latent inhibition by chronic amphetamine in rats. Psychopharmacology (Berl.), 83, 194–199.CrossRefGoogle Scholar
Weiner, I., Lubow, R. E., & Feldon, J. (1988). Disruption of latent inhibition by acute administration of low doses of amphetamine. Pharmacology, Biochemistry, and Behavior, 30, 871–878.CrossRefGoogle ScholarPubMed
Weiner, I., Shadach, E., Barkai, R., & Feldon, J. (1997). Haloperidol- and clozapine-induced enhancement of latent inhibition with extended conditioning: implications for the mechanism of action of neuroleptic drugs. Neuropsychopharmacology, 16, 42–50.CrossRefGoogle ScholarPubMed
Weiner, I., Shadach, E., Tarrasch, R., Kidron, R., & Feldon, J. (1996b). The latent inhibition model of schizophrenia: further validation using the atypical neuroleptic, clozapine. Biological Psychiatry, 40, 834–843.CrossRefGoogle ScholarPubMed
Weiner, I., Tarrasch, R., Bernasconi, E., et al. (1997). Amphetamine-induced disruption of latent inhibition is not reinforcer-mediated. Pharmacology, Biochemistry, and Behavior, 56, 817–826.CrossRefGoogle Scholar
Weiner, I., Tarrasch, R., & Feldon, J. (1995). Basolateral amygdala lesions do not disrupt latent inhibition. Behavioural Brain Research, 72, 73–81.CrossRefGoogle Scholar
Westbrook, R. F., Jones, M. L., Bailey, G. K., & Harris, J. A. (2000). Contextual control over conditioned responding in a latent inhibition paradigm. Journal of Experimental Psychology. Animal Behavior Processes, 26, 157–173.CrossRefGoogle Scholar
Wheeler, D. S., Chang, R. C., & Miller, R. R. (2003). Massive preexposure and preexposure in multiple contexts attenuate the context specificity of latent inhibition. Learning and Behavior, 31, 378–386.CrossRefGoogle ScholarPubMed
Williams, J. H., Wellman, N. A., Geaney, D. P., et al. (1996). Antipsychotic drug effects in a model of schizophrenic attentional disorder: a randomized controlled trial of the effects of haloperidol on latent inhibition in healthy people. Biological Psychiatry, 40, 1135–1143.CrossRefGoogle Scholar
Williams, J. H., Wellman, N. A., Geaney, D. P., et al. (1997). Haloperidol enhances latent inhibition in visual tasks in healthy people. Psychopharmacology (Berl.), 133, 262–268.CrossRefGoogle ScholarPubMed
Williams, J. H., Wellman, N. A., Geaney, D. P., et al. (1998). Reduced latent inhibition in people with schizophrenia: an effect of psychosis or of its treatment. The British Journal of Psychiatry, 172, 243–249.CrossRefGoogle ScholarPubMed
Wuthrich, V., & Bates, T. C. (2001). Schizotypy and latent inhibition: non-linear linkage between psychometric and cognitive markers. Personality and Individual Differences, 30, 783–798.CrossRefGoogle Scholar
Yap, C. S., & Richardson, R. (2005). Latent inhibition in the developing rat: an examination of context-specific effects. Developmental Psychobiology, 47, 55–65.CrossRefGoogle ScholarPubMed
Yee, B. K., Feldon, J., & Rawlins, J. N. (1995). Latent inhibition in rats is abolished by NMDA-induced neuronal loss in the retrohippocampal region, but this lesion effect can be prevented by systemic haloperidol treatment. Behavioral Neuroscience, 109, 227–240.CrossRefGoogle ScholarPubMed
Yee, B. K., Feldon, J., & Rawlins, J. N. (1997). Cytotoxic lesions of the retrohippocampal region attenuate latent inhibition but spare the partial reinforcement extinction effect. Experimental Brain Research, 115, 247–256.CrossRefGoogle ScholarPubMed
Young, A. M., Joseph, M. H., & Gray, J. A. (1993). Latent inhibition of conditioned dopamine release in rat nucleus accumbens. Neuroscience, 54, 5–9.CrossRefGoogle ScholarPubMed
Zahm, D. S. (1999). Functional-anatomical implications of the nucleus accumbens core and shell subterritories. Annals of the New York Academy of Sciences, 877, 113–128.CrossRefGoogle ScholarPubMed
Zahm, D. S. (2000). An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neuroscience & Biobehavioral Reviews, 24, 85–105.CrossRefGoogle ScholarPubMed
Zahm, D. S., & Brog, J. S. (1992). On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience, 50, 751–767.CrossRefGoogle ScholarPubMed
Zuckerman, L., Rimmerman, N., & Weiner, I. (2003). Latent inhibition in 35-day-old rats is not an “adult” latent inhibition: implications for neurodevelopmental models of schizophrenia. Psychopharmacology (Berl.), 169, 298–307.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×