Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-19T08:52:54.595Z Has data issue: false hasContentIssue false

2 - Cellular and molecular alterations in animal models of serotonin transporter disruption: a comparison between developmental and adult stages

Published online by Cambridge University Press:  06 July 2010

Allan V. Kalueff
Affiliation:
Georgetown University Medical Center
Justin L. LaPorte
Affiliation:
National Institute of Mental Health
Get access

Summary

ABSTRACT

Serotonin transporter (SERT, 5-HTT) plays an important role in the regulation of emotional states. It is a target for the most widely used class of antidepressants, selective serotonin reuptake inhibitors (SSRIs), and is also related to a genetic factor underlying the pathogenesis of affective disorders. Humans with lower SERT expression genotypes show a higher neuroticism score and are more sensitive to stress, suggesting that low SERT expression during development may be a trigger for affective disorders. On the other hand, repeated administration of SSRIs reduces the stress response and treats affective disorders. These observations suggest that disruption of SERT function early in life and in adulthood produces different phenotypes. Thus, understanding the cellular and molecular mechanisms underlying these phenotypes will help us to understand the pathogenesis of affective disorders and develop better therapeutic approaches for their treatment. Animal models with altered SERT function provide useful tools for the studies concerning this purpose. This chapter is intended to overview current available data concerning the cellular and molecular alterations in the models in which SERT functions are disrupted during different developmental stages. We will focus on a comparison between constitutive SERT knock-out mice and repeated administration of SSRIs in adulthood. Furthermore, studies concerning the prenatal administration of SSRIs and genomic manipulation of SERT expression in adulthood are also discussed.

INTRODUCTION

The serotonin (5-HT) transporter (SERT, 5-HTT) functions as a 5-HT reuptake site to take extracellular 5-HT back into the nerve terminals and, therefore, terminates the action of 5-HT. Thus, the function of SERT is critical for controlling 5-HT activity, which plays an important role in emotional regulation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bourin, M, David, D J P, Jolliet, P, Gardier, A (2002). Mechanism of action of antidepressants and therapeutic perspectives. Therapie 57: 385–96.Google ScholarPubMed
Artigas, F, Bel, N, Casanovas, J M, Romero, L (1996). Adaptative changes of the serotonergic system after antidepressant treatments. Adv Exp Med Biol 398: 51–9.CrossRefGoogle ScholarPubMed
Murphy, D L, Lerner, A, Rudnick, G, Lesch, K P (2004). Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Molec Interv 4: 109–23.CrossRefGoogle ScholarPubMed
Hu, X, Oroszi, G, Chun, J, Smith, T L, Goldman, D, Schuckit, M A (2005). An expanded evaluation of the relationship of four alleles to the level of response to alcohol and the alcoholism risk. Alcohol Clin Exp Res 29: 8–16.CrossRefGoogle ScholarPubMed
Nakamura, M, Ueno, S, Sano, A, Tanabe, H (2000). The human serotonin transporter gene linked polymorphism (5-HTTLPR) shows ten novel allelic variants. Mol Psychiatry 5: 32–8.CrossRefGoogle ScholarPubMed
Lesch, K P, Bengel, D, Heils, A, et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274: 1527–31.CrossRefGoogle ScholarPubMed
Heils, A, Teufel, A, Petri, S, et al. (1996). Allelic variation of human serotonin transporter gene expression. J Neurochem 66: 2621–4.CrossRefGoogle ScholarPubMed
Greenberg, B D, Li, Q, Lucas, F R, et al. (2000). Association between the serotonin transporter promoter polymorphism and personality traits in a primarily female population sample. Am J Med Genetics 96: 202–16.3.0.CO;2-J>CrossRefGoogle Scholar
Caspi, A, Sugden, K, Moffitt, T E, et al. (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301: 386–9.CrossRefGoogle ScholarPubMed
Zalsman, G, Huang, Y Y, Oquendo, M A, et al. (2006). Association of a triallelic serotonin transporter gene promoter region (5-HTTLPR) polymorphism with stressful life events and severity of depression. Am J Psychiatry 163: 1588–93.CrossRefGoogle ScholarPubMed
Roy, A, Hu, X Z, Janal, M N, Goldman, D (2007). Interaction between childhood trauma and serotonin transporter gene variation in suicide. Neuropsychopharmacology 32: 2046–52.CrossRefGoogle ScholarPubMed
Bruning, G, Liangos, O, Baumgarten, H G (1997). Prenatal development of the serotonin transporter in mouse brain. Cell Tissue Res 289: 211–21.Google ScholarPubMed
Zhou, F C, Sari, Y, Zhang, J K (2000). Expression of serotonin transporter protein in developing rat brain. Dev Brain Res 119: 33–45.CrossRefGoogle ScholarPubMed
Azmitia, E C (2001a). Neuronal instability: implications for Rett's syndrome. Brain Dev 23 (Suppl 1): S1–10.CrossRefGoogle ScholarPubMed
Buznikov, G A, Lambert, H W, Lauder, J J (2001). Serotonin and serotonin-like substances as regulators of early embryogenesis and morphogenesis. Cell Tissue Res 305: 177–86.CrossRefGoogle ScholarPubMed
Whitaker-Azmitia, PM (2001). Serotonin and brain development: role in human developmental diseases. Brain Res Bull 56: 479–85.CrossRefGoogle ScholarPubMed
Bengel, D, Murphy, D L, Andrews, A M, et al. (1998). Altered brain serotonin homeostasis and locomotor insensitivity to 3,4-methylenedioxymethamphetamine (“ecstasy”) in serotonin transporter-deficient mice. Molec Pharmacol 53: 649–55.CrossRefGoogle Scholar
Lira, A, Zhou, M M, Castanon, N, et al. (2003). Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol Psychiatry 54: 960–71.CrossRefGoogle ScholarPubMed
Zhao, S, Edwards, J, Carroll, J, et al. (2006). Insertion mutation at the C-terminus of the serotonin transporter disrupts brain serotonin function and emotion-related behaviors in mice. Neuroscience 140: 321–34.CrossRefGoogle ScholarPubMed
Perez, X A, Andrews, A M (2005). Chronoamperometry to determine differential reductions in uptake in brain synaptosomes from serotonin transporter knockout mice. Analyt Chem 77: 818–26.CrossRefGoogle ScholarPubMed
Fabre, V, Beaufour, C, Evrard, A, et al. (2000a). Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur J Neurosci 12: 2299–310.CrossRefGoogle ScholarPubMed
Mathews, TA, Fedele, D E, Coppelli, F M, Avila, A M, Murphy, D L, Andrews, A M (2004). Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J Neurosci Met 140: 169–81.CrossRefGoogle Scholar
Kim, D K, Tolliver, T J, Huang, S J, et al. (2005). Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. Neuropharmacology 49: 798–810.CrossRefGoogle ScholarPubMed
Holmes, A, Yang, R J, Lesch, K P, Crawley, J N, Murphy, D L (2003a). Mice lacking the serotonin transporter exhibit 5-HT1A receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology 28: 2077–88.CrossRefGoogle ScholarPubMed
Holmes, A, Murphy, D L, Crawley, J N (2002). Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology 161: 160–7.CrossRefGoogle ScholarPubMed
Ansorge, M S, Zhou, M M, Lira, A, Hen, R, Gingrich, J A (2004). Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306: 879–81.CrossRefGoogle ScholarPubMed
Kalueff, A V, Ren-Patterson, R F, Murphy, D L (2007). The developing use of heterozygous mutant mouse models in brain monoamine transporter research. Trends Pharmacol Sci 28: 122–7.CrossRefGoogle ScholarPubMed
Li, Q (2006). Cellular and molecular alterations in mice with deficient and reduced serotonin transporters. Mol Neurobiol 34: 51–66.CrossRefGoogle ScholarPubMed
Holmes, A, Murphy, D L, Crawley, J N (2003b). Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol Psychiatry 54: 953–9.CrossRefGoogle ScholarPubMed
Murphy, D L, Lesch, K P (2008). Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci 9: 85–96.CrossRefGoogle ScholarPubMed
Hoyer, D, Hannon, J P, Martin, G R (2002). Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71: 533–54.CrossRefGoogle ScholarPubMed
Hoyer, D, Clarke, D E, Fozard, J R, et al. (1994). VII. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46: 157–204.Google Scholar
Boer, J A, Bosker, F J, Slaap, B R (2000). Serotonergic drugs in the treatment of depressive and anxiety disorders. Human Psychopharmacol Clin Exp 15: 315–36.3.0.CO;2-Y>CrossRefGoogle Scholar
Graeff, F G, Guimaraes, F S, Andrade, T G, Deakin, J F (1996). Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav 54: 129–41.CrossRefGoogle Scholar
Griebel, G (1995). 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: more than 30 years of research. Pharmacol Ther 65: 319–95.CrossRefGoogle Scholar
Groenink, L, Pattij, T, Jongh, R, et al. (2003). 5-HT1A receptor knockout mice and mice overexpressing corticotropin-releasing hormone in models of anxiety. Eur J Pharmacol 463: 185–97.CrossRefGoogle ScholarPubMed
Olivier, B, Pattij, T, Wood, S J, Oosting, R, Sarnyai, Z, Toth, M (2001). The 5-HT1A receptor knockout mouse and anxiety. Behav Pharmacol 12: 439–50.CrossRefGoogle Scholar
Gingrich, J A, Hen, R (2001). Dissecting the role of the serotonin system in neuropsychiatric disorders using knockout mice. Psychopharmacology 155: 1–10.CrossRefGoogle ScholarPubMed
Holmes, A, Li, Q, Murphy, D L, Gold, E, Crawley, JN (2003a). Abnormal anxiety-related behavior in serotonin transporter null mutant mice: the influence of genetic background. Genes Brain Behav 2: 365–80.CrossRefGoogle ScholarPubMed
Li, Q, Wichems, C, Heils, A, Lesch, K P, Murphy, D L (2000). Reduction in the density and expression, but not G-protein coupling, of serotonin receptors (5-HT1A) in 5-HT transporter knock-out mice: gender and brain region differences. J Neurosci 20: 7888–95.CrossRefGoogle Scholar
Li, Q, Wichems, C, Heils, A, Kar, L D, Lesch, K P, Murphy, D L (1999). Reduction of 5-hydroxytryptamine (5-HT)(1A)-mediated temperature and neuroendocrine responses and 5-HT(1A) binding sites in 5-HT transporter knockout mice. J Pharmacol Exp Ther 291: 999–1007.Google ScholarPubMed
Lanfumey, L, Cour, C M, Froger, N, Hamon, M (2000). 5-HT-HPA interactions in two models of transgenic mice relevant to major depression. Neurochem Res 25: 1199–206.CrossRefGoogle ScholarPubMed
Gobbi, G, Murphy, D L, Lesch, K P, Blier, P (2001). Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study. J Pharmacol Exp Ther 296: 987–95.Google Scholar
Bouali, S, Evrard, A, Chastanet, M, Lesch, K P, Hamon, M, Adrien, J (2003). Sex hormone-dependent desensitization of 5-HT1A autoreceptors in knockout mice deficient in the 5-HT transporter. Eur J Neurosci 18: 2203–12.CrossRefGoogle ScholarPubMed
Bethea, C L, Gundlah, C, Mirkes, S J (2000). Ovarian steroid action in the serotonin neural system of macaques. Novartis Found Symp 230: 112–30.Google ScholarPubMed
Carrasco, G A, Barker, S A, Zhang, Y, et al. (2004). Estrogen treatment increases the levels of regulator of G protein signaling-Z1 in the hypothalamic paraventricular nucleus: possible role in desensitization of 5-hydroxytryptamine(1A) receptors. Neuroscience 127: 261–7.CrossRefGoogle Scholar
D'Souza, D N, Zhang, Y H, Damjanoska, K J, et al. (2004). Estrogen reduces serotonin-1A receptor-mediated oxytocin release and G alpha(i/o/z) proteins in the hypothalamus of ovariectomized rats. Neuroendocrinology 80: 31–41.CrossRefGoogle Scholar
Saux, M, Di Paolo, T (2005). Changes in 5-HT1A receptor binding and G-protein activation in the rat brain after estrogen treatment: comparison with tamoxifen and raloxifene. J Psychiatry Neurosci 30: 110–17.Google ScholarPubMed
Lu, N Z, Bethea, C L (2002). Ovarian steroid regulation of 5-HT1A receptor binding and G protein activation in female monkeys. Neuropsychopharmacology 27: 12–24.CrossRefGoogle Scholar
Azmitia, E C, Whitaker-Azmitia, P M (1997). Development and adult plasticity of serotoninergic neurons and their target cells. In Baumgarten, H G, Gothert, M, editors. Serotoninergic neurons and 5-HT receptors in the CNS. Berlin: Springer, pp. 1–39.Google Scholar
Azmitia, E C (2001b). Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res Bull 56: 413–24.CrossRefGoogle ScholarPubMed
Whitaker-Azmitia, P M (2005). Behavioral and cellular consequences of increasing serotonergic activity during brain development: a role in autism?Int J Devel Neurosci 23: 75–83.CrossRefGoogle ScholarPubMed
Gross, C, Zhuang, X X, Stark, K, et al. (2002). Serotonin(1A) receptor acts during development to establish normal anxiety-like behavior in the adult. Nature 416: 396–400.CrossRefGoogle Scholar
Li, Q, Holmes, A, Ma, L, Kar, L D, Garcia, F, Murphy, D L (2004). Medial hypothalamic 5-hydroxytryptamine (5-HT)1A receptors regulate neuroendocrine responses to stress and exploratory locomotor activity: application of recombinant adenovirus containing 5-HT1A sequences. J Neurosci 24: 10 868–77.CrossRefGoogle ScholarPubMed
Li, Q, Wichems, C H, Ma, L, Kar, L D, Garcia, F, Murphy, D L (2003). Brain region-specific alterations of 5-HT2A and 5-HT2C receptors in serotonin transporter knockout mice. J Neurochem 84: 1256–65.CrossRefGoogle ScholarPubMed
Rioux, A, Fabre, V, Lesch, K P, et al. (1999). Adaptive changes of serotonin 5-HT2A receptors in mice lacking the serotonin transporter. Neurosci Lett 262: 113–16.CrossRefGoogle ScholarPubMed
Saphier, D, Farrar, G E, Welch, J E (1995). Differential inhibition of stress-induced adrenocortical responses by 5-HT1A agonists and by 5-HT2 and 5-HT3 antagonists. Psychoneuroendocrinology 20: 239–57.CrossRefGoogle ScholarPubMed
Pompeiano, M, Palacios, J M, Mengod, G (1994). Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Mol Brain Res 23: 163–78.CrossRefGoogle ScholarPubMed
Hartig, P R, Hoffman, B J, Kaufman, M J, Hirata, F (1990). The 5-HT1C receptor. Ann NY Acad Sci 600: 149–66.CrossRefGoogle ScholarPubMed
Broocks, A, Bandelow, B, George, A, et al. (2000). Increased psychological responses and divergent neuroendocrine responses to m-CPP and ipsapirone in patients with panic disorder. Int Clin Psychopharmacol 15: 153–61.CrossRefGoogle ScholarPubMed
Burns, C M, Chu, H, Rueter, S M, et al. (1997). Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387: 303–08.CrossRefGoogle ScholarPubMed
Niswender, C M, Sanders-Bush, E, Emeson, R B (1998). Identification and characterization of RNA editing events within the 5-HT2C receptor. Ann NY Acad Sci 861: 38–48.CrossRefGoogle ScholarPubMed
Wang, Q, O'Brien, P J, Chen, C X, Cho, D S, Murray, J M, Nishikura, K (2000). Altered G protein-coupling functions of RNA editing isoform and splicing variant serotonin2C receptors. J Neurochem 74: 1290–300.CrossRefGoogle Scholar
Canton, H, Emeson, R B, Barker, E L, et al. (1996). Identification, molecular cloning, and distribution of a short variant of the 5-hydroxytryptamine2C receptor produced by alternative splicing. Mol Pharmacol 50: 799–807.Google Scholar
Englander, M T, Dulawa, S C, Bhansali, P, Schmauss, C (2005). How stress and fluoxetine modulate serotonin 2C receptor pre-mRNA editing. J Neurosci 25: 648–51.CrossRefGoogle ScholarPubMed
Gurevich, I, Tamir, H, Arango, V, Dwork, A J, Mann, J J, Schmauss, C (2002b). Altered editing of serotonin 2C receptor pre-mRNA in the prefrontal cortex of depressed suicide victims. Neuron 34: 349–56.CrossRefGoogle ScholarPubMed
Gurevich, I, Englander, M T, Adlersberg, M, Siegal, N B, Schmauss, C (2002a). Modulation of serotonin 2C receptor editing by sustained changes in serotonergic neurotransmission. J Neurosci 22: 10 529–32.CrossRefGoogle ScholarPubMed
Heisler, L K, Chu, H M, Tecott, L H (1998). Epilepsy and obesity in serotonin 5-HT2C receptor mutant mice. Ann NY Acad Sci 861: 74–8.CrossRefGoogle ScholarPubMed
Nonogaki, K, Strack, A M, Dallman, M F, Tecott, L H (1998). Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptor gene. Nat Med 4: 1152–6.CrossRefGoogle ScholarPubMed
Vickers, S P, Clifton, P G, Dourish, C T, Tecott, L H (1999). Reduced satiating effect of d-fenfluramine in serotonin 5-HT(2C) receptor mutant mice. Psychopharmacology (Berl) 143: 309–14.CrossRefGoogle ScholarPubMed
Bloom, F E, Morales, M (1998). The central 5-HT3 receptor in CNS disorders. Neurochem Res 23: 653–9.CrossRefGoogle ScholarPubMed
Delagrange, P, Misslin, R, Seale, T W, Pfeiffer, B, Rault, S, Renard, P (1999). Effects of S-21007, a potent 5-HT3 partial agonist, in mouse anxiety. Acta Pharmacol Sin 20: 805–12.Google ScholarPubMed
Ye, J H, Ponnudurai, R, Schaefer, R (2001). Ondansetron: a selective 5-HT3 receptor antagonist and its applications in CNS-related disorders. CNS Drug Rev 7: 199–213.CrossRefGoogle Scholar
Mossner, R, Schmitt, A, Hennig, T, et al. (2004). Quantitation of 5HT3 receptors in forebrain of serotonin transporter deficient mice. J Neural Transm 111: 27–35.CrossRefGoogle ScholarPubMed
Chen, J J, Li, Z S, Pan, H, et al. (2001). Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high-affinity serotonin transporter: abnormal intestinal motility and the expression of cation transporters. J Neurosci 21: 6348–61.CrossRefGoogle ScholarPubMed
Liu, M T, Rayport, S, Jiang, Y, Murphy, D L, Gershon, M D (2002). Expression and function of 5-HT3 receptors in the enteric neurons of mice lacking the serotonin transporter. Am J Physiol-Gastroint Liver Physiol 283: G1398–411.CrossRefGoogle ScholarPubMed
Jabbi, M, Korf, J, Kema, I P, et al. (2007). Convergent genetic modulation of the endocrine stress response involves polymorphic variations of 5-HTT, COMT and MAOA. Mol Psychiatry 12: 483–90.CrossRefGoogle ScholarPubMed
Oberlander, T F, Warburton, W, Misri, S, Aghajanian, J, Hertzman, C (2006). Neonatal outcomes after prenatal exposure to selective serotonin reuptake inhibitor antidepressants and maternal depression using population-based linked health data. Arch Gen Psychiatry 63: 898–906.CrossRefGoogle ScholarPubMed
Gentile, S (2005b). SSRIs in pregnancy and lactation – emphasis on neurodevelopmental outcome. CNS Drugs 19: 623–33.CrossRefGoogle ScholarPubMed
Gentile, S (2005a). The safety of newer antidepressants in pregnancy and breastfeeding. Drug Safety 28: 137–52.CrossRefGoogle ScholarPubMed
Bairy, K L, Madhyastha, S, Ashok, K P, Bairy, I, Malini, S (2007). Developmental and behavioral consequences of prenatal fluoxetine. Pharmacology 79: 1–11.CrossRefGoogle ScholarPubMed
Oberlander, T F, Misri, S, Fitzgerald, C E, Kostaras, X, Rurak, D, Riggs, W (2004). Pharmacologic factors associated with transient neonatal symptoms following prenatal psychotropic medication exposure. J Clin Psychiatry 65: 230–7.CrossRefGoogle ScholarPubMed
Coleman, F H, Christensen, H D, Gonzalez, C L, Rayburn, W F (1999). Behavioral changes in developing mice after prenatal exposure to paroxetine (Paxil). Am J Obstet Gynecol 181: 1166–71.CrossRefGoogle Scholar
Lisboa, S F, Oliveira, P E, Costa, L C, Venancio, E J, Moreira, E G (2007). Behavioral evaluation of male and female mice pups exposed to fluoxetine during pregnancy and lactation. Pharmacology 80: 49–56.CrossRefGoogle ScholarPubMed
Cabrera-Vera, T M, Battaglia, G (1998). Prenatal exposure to fluoxetine (Prozac) produces site-specific and age-dependent alterations in brain serotonin transporters in rat progeny: evidence from autoradiographic studies. J Pharmacol Exp Therap 286: 1474–481.Google ScholarPubMed
Montero, D, Ceballos, M L, Del Rio, J (1990). Down-regulation of 3H-imipramine binding sites in rat cerebral cortex after prenatal exposure to antidepressants. Life Sci 46: 1619–26.CrossRefGoogle Scholar
Cabrera-Vera, T M, Garcia, F, Pinto, W, Battaglia, G (1997). Effect of prenatal fluoxetine (Prozac) exposure on brain serotonin neurons in prepubescent and adult male rat offspring. J Pharmacol Exp Ther 280: 138–45.Google ScholarPubMed
Cabrera, T M, Battaglia, G (1994). Delayed decreases in brain 5-hydroxytryptamine2A/2C receptor density and function in male rat progeny following prenatal fluoxetine. J Pharmacol Exp Ther 269: 637–45.Google ScholarPubMed
Romero, G, Toscano, E, Del Rio, J (1994). Effect of prenatal exposure to antidepressants on 5-HT-stimulated phosphoinositide hydrolysis and 5-HT2 receptors in rat brain. Gen Pharmacol 25: 851–6.CrossRefGoogle ScholarPubMed
Landry, M, Frasier, M, Chen, Z, et al. (2005). Fluoxetine treatment of prepubescent rats produces a selective functional reduction in the 5-HT2A receptor-mediated stimulation of oxytocin. Synapse 58: 102–09.CrossRefGoogle ScholarPubMed
Kar, L D, Javed, A, Zhang, Y H, Serres, F, Raap, D K, Gray, T S (2001). 5-HT2A receptors stimulate ACTH, corticosterone, oxytocin, renin, and prolactin release and activate hypothalamic CRF and oxytocin-expressing cells. J Neurosci 21: 3572–9.Google ScholarPubMed
Zhang, Y H, Damjanoska, K J, Carrasco, G A, et al. (2002). Evidence that 5-HT2A receptors in the hypothalamic paraventricular nucleus mediate neuroendocrine responses to (-)DOI. J Neurosci 22: 9635–42.CrossRefGoogle ScholarPubMed
Damjanoska, K J, Kar, L D, Kindel, G H, et al. (2003). Chronic fluoxetine differentially affects 5-hydroxytryptamine (2A) receptor signaling in frontal cortex, oxytocin- and corticotropin-releasing factor-containing neurons in rat paraventricular nucleus. J Pharmacol Exp Ther 306: 563–71.CrossRefGoogle ScholarPubMed
Popa, D, Lena, C, Alexandre, C, Adrien, J (2008). Lasting syndrome of depression produced by reduction in serotonin uptake during postnatal development: evidence from sleep, stress, and behavior. J Neurosci 28: 3546–54.CrossRefGoogle Scholar
Ansorge, M S, Morelli, E, Gingrich, J A (2008). Inhibition of serotonin but not norepinephrine transport during development produces delayed, persistent perturbations of emotional behaviors in mice. J Neurosci 28: 199–207.CrossRefGoogle Scholar
Cabrera, T M, Levy, A D, Li, Q, Kar, L D, Battaglia, G (1994). Cocaine-induced deficits in ACTH and corticosterone responses in female rat progeny. Brain Res Bull 34: 93–7.CrossRefGoogle ScholarPubMed
Fabre, V, Boutrel, B, Hanoun, N, et al. (2000b). Homeostatic regulation of serotonergic function by the serotonin transporter as revealed by nonviral gene transfer. J Neurosci 20: 5065–75.CrossRefGoogle ScholarPubMed
Thakker, D R, Natt, F, Husken, D, et al. (2005). siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain. Mol Psychiatry 10: 782–9.CrossRefGoogle ScholarPubMed
Benmansour, S, Cecchi, M, Morilak, D A, et al. (1999). Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level. J Neurosci 19: 10 494–501.CrossRefGoogle ScholarPubMed
Horschitz, S, Hummerich, R, Schloss, P (2001). Structure, function and regulation of the 5-hydroxytryptamine (serotonin) transporter. Biochem Soc Trans 29: 728–32.CrossRefGoogle ScholarPubMed
Mirza, N R, Nielsen, E O, Troelsen, K B (2007). Serotonin transporter density and anxiolytic-like effects of antidepressants in mice. Prog Neuropsychopharmacol Biol Psychiatry 31: 858–66.CrossRefGoogle ScholarPubMed
Hirano, K, Seki, T, Sakai, N, et al. (2005). Effects of continuous administration of paroxetine on ligand binding site and expression of serotonin transporter protein in mouse brain. Brain Res 1053: 154–61.CrossRefGoogle ScholarPubMed
Artigas, F (1993). 5-HT and antidepressants: new views from microdialysis studies. Trends Pharmacol Sci 14: 262.CrossRefGoogle ScholarPubMed
Blier, P, Montigny, C (1994). Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15: 220–6.CrossRefGoogle ScholarPubMed
Dawson, L A, Nguyen, H Q, Smith, D L, Schechter, L E (2002). Effect of chronic fluoxetine and WAY-100635 treatment on serotonergic neurotransmission in the frontal cortex. J Psychopharmacol 16: 145–52.CrossRefGoogle ScholarPubMed
Dawson, L A, Nguyen, H Q, Smith, D I, Schechter, L E (2000). Effects of chronic fluoxetine treatment in the presence and absence of (+/−)pindolol: a microdialysis study. Br J Pharmacol 130: 797–804.CrossRefGoogle ScholarPubMed
Kreiss, D S, Lucki, I (1995). Effects of acute and repeated administration of antidepressant drugs on extracellular levels of 5-hydroxytryptamine measured in vivo. J Pharmacol Exp Ther 274: 866–76.Google ScholarPubMed
Hensler, J G (2003). Regulation of 5-HT1A receptor function in brain following agonist or antidepressant administration. Life Sci 72: 1665–82.CrossRefGoogle ScholarPubMed
Hjorth, S, Bengtsson, H J, Kullberg, A, Carlzon, D, Peilot, H, Auerbach, S B (2000). Serotonin autoreceptor function and antidepressant drug action. J Psychopharmacol 14: 177–85.CrossRefGoogle ScholarPubMed
Hervas, I, Bel, N, Fernandez, A G, Palacios, J M, Artigas, F (1998). In vivo control of 5-hydroxytryptamine release by terminal autoreceptors in rat brain areas differentially innervated by the dorsal and median raphe nuclei. Naunyn Schmiede Arch Pharmacol 358: 315–22.CrossRefGoogle ScholarPubMed
Cornelisse, L N, Harst, J E, Lodder, J C, et al. (2007). Reduced 5-HT1A and GABAB receptor function in dorsal raphe neurons upon chronic fluoxetine treatment of socially stressed rats. J Neurophysiol 98: 196–204.CrossRefGoogle ScholarPubMed
Rossi, D V, Burke, T F, McCasland, M, Hensler, J G (2008). Serotonin-1A receptor function in the dorsal raphe nucleus following chronic administration of the selective serotonin reuptake inhibitor sertraline. J Neurochem 105: 1091–9.CrossRefGoogle ScholarPubMed
Hensler, J G (2002). Differential regulation of 5-HT1A receptor-G protein interactions in brain following chronic antidepressant administration. Neuropsychopharmacology 26: 565–73.CrossRefGoogle ScholarPubMed
Castro, M E, Diaz, A, Del Olmo, E, Pazos, A (2003). Chronic fluoxetine induces changes in G protein coupling at pre and postsynaptic 5-HT1A receptors in rat brain. Neuropharmacology 44: 93–101.CrossRefGoogle Scholar
Li, Q, Battaglia, G, Kar, L D (1997a). Autoradiographic evidence for differential G-protein coupling of 5-HT1A receptors in rat brain: lack of effect of repeated injections of fluoxetine. Brain Res 769: 141–51.CrossRefGoogle ScholarPubMed
Kobayashi, T, Washiyama, K, Ikeda, K (2003). Inhibition of G protein-activated inwardly rectifying K+ channels by fluoxetine (Prozac). Br J Pharmacol 138: 1119–28.CrossRefGoogle Scholar
Kobayashi, T, Washiyama, K, Ikeda, K (2004). Inhibition of G protein-activated inwardly rectifying K+ channels by various antidepressant drugs. Neuropsychopharmacology 29: 1841–51.CrossRefGoogle Scholar
Levita, L, Hammack, S E, Mania, I, Li, X Y, Davis, M, Rainnie, D G (2004). 5-Hydroxytryptamine(1A)-like receptor activation in the bed nucleus of the stria terminalis: electrophysiological and behavioral studies. Neuroscience 128: 583–96.CrossRefGoogle Scholar
Artigas, F, Adell, A, Celada, P (2006). Pindolol augmentation of antidepressant response. Curr Drug Targets 7: 139–47.CrossRefGoogle ScholarPubMed
Artigas, F, Perez, V, Alvarez, E (1994). Pindolol induces a rapid improvement of depressed patients treated with serotonin reuptake inhibitors. Arch Gen Psychiatry 51: 248–51.CrossRefGoogle ScholarPubMed
Blier, P, Lista, A, Montigny, C (1993). Differential properties of presynaptic and postsynaptic 5-hydroxytryptamine(1A) Receptors in the dorsal raphe and hippocampus. 1. Effect of spiperone. J Pharmacol Exp Ther 265: 7–15.Google Scholar
Hervas, I, Vilaro, M T, Romero, L, Scorza, M C, Mengod, G, Artigas, F (2001). Desensitization of 5-HT1A autoreceptors by a low chronic fluoxetine dose effect of the concurrent administration of WAY-100635. Neuropsychopharmacology 24: 11–20.CrossRefGoogle Scholar
Romero, L, Casanovas, J M, Perez, V, Alvarez, E, Artigas, F (1996). Rapid antidepressant effects with SSRIs and 5-HT1A antagonists. Basic and clinical studies. J Neurochem 66: S35.Google Scholar
Kantor, S, Graf, M, Anheuer, Z E, Bagdy, G (2001). Rapid desensitization of 5-HT1A receptors in Fawn-Hooded rats after chronic fluoxetine treatment. Euro Neuropsychopharmacol 11: 15–24.CrossRefGoogle Scholar
Li, Q, Muma, N A, Battaglia, G, Kar, L D (1997c). A desensitization of hypothalamic 5-HT1A receptors by repeated injections of paroxetine: reduction in the levels of G(i) and G(o) proteins and neuroendocrine responses, but not in the density of 5-HT1A receptors. J Pharmacol Exp Ther 282: 1581–90.Google Scholar
Li, Q, Brownfield, M S, Levy, A D, Battaglia, G, Cabrera, T M, Kar, L D (1994). Attenuation of hormone responses to the 5-HT1A agonist ipsapirone by long-term treatment with fluoxetine, but not desipramine, in male rats. Biol Psychiatry 36: 300–08.CrossRefGoogle Scholar
Li, Q, Muma, N A, Kar, L D (1996). Chronic fluoxetine induces a gradual desensitization of 5-HT1A receptors: reductions in hypothalamic and midbrain Gi and Go proteins and in neuroendocrine responses to a 5-HT1A agonist. J Pharmacol Exp Ther 279: 1035–42.Google Scholar
Raap, D K, Evans, S, Garcia, F, et al. (1999a). Daily injections of fluoxetine induce dose-dependent desensitization of hypothalamic 5-HT1A receptors: reductions in neuroendocrine responses to 8-OH-DPAT and in levels of G(z) and G(i) proteins. J Pharmacol Exp Ther 288: 98–106.Google Scholar
Raap, D K, Garcia, F, Muma, N A, Wolf, W A, Battaglia, G, Kar, L D (1999b). Sustained desensitization of hypothalamic 5-hydroxytryptamine(1A) receptors after discontinuation of fluoxetine: inhibited neuroendocrine responses to 8-hydroxy-2-(dipropylamino)tetralin in the absence of changes in G(i/o/z) proteins. J Pharmacol Exp Ther 288: 561–7.Google Scholar
Zanoveli, J M, Nogueira, R L, Zangrossi, H. (2007) Enhanced reactivity of 5-HT1A receptors in the rat dorsal periaqueductal gray matter after chronic treatment with fluoxetine and sertraline: evidence from the elevated T-maze. Neuropharmacology 52: 1188–95.CrossRefGoogle ScholarPubMed
Beck, S G, Birnstiel, S, Choi, K C, Pouliot, W A (1997). Fluoxetine selectively alters 5-hydroxytryptamine1A and gamma-aminobutyric acidB receptor-mediated hyperpolarization in area CA1, but not area CA3, hippocampal pyramidal cells. J Pharmacol Exp Ther 281: 115–22.Google Scholar
Pejchal, T, Foley, M A, Kosofsky, B E, Waeber, C (2002). Chronic fluoxetine treatment selectively uncouples raphe 5-HT1A receptors as measured by [S-35]-GTP gamma S autoradiography. Br J Pharmacol 135: 1115–22.CrossRefGoogle Scholar
Jia, C, Carrasco, G A, Garcia, F, et al. (2006). Treatment with SSRIs or 8-OH-DPAT differentially alters 5-HT1A receptor-mediated phosphorylation of ERK and neuroendocrine responses in rats. Neuroscience meeting. 33. 21/C13. Ref Type: Abstract.Google Scholar
Crane, J W, Shimizu, K, Carrasco, G A, et al. (2007). 5-HT(1A) receptors mediate (+)8-OH-DPAT-stimulation of extracellular signal-regulated kinase (MAP kinase) in vivo in rat hypothalamus: time dependence and regional differences. Brain Res 1183: 51–9.CrossRefGoogle ScholarPubMed
Lifschytz, T, Gur, E, Lerer, B, Newman, M E (2004). Effects of triiodothyronine and fluoxetine on 5-HT1A and 5-HT1B autoreceptor activity in rat brain: regional differences. J Neurosci Meth 140: 133–9.CrossRefGoogle ScholarPubMed
Shalom, G, Gur, E, Kar, L D, Newman, M E (2004). Repeated administration of the 5-HT1B receptor antagonist SB-224289 blocks the desensitisation of 5-HT1B autoreceptors induced by fluoxetine in rat frontal cortex. Naunyn Schmiede Arch Pharmacol 370: 84–90.CrossRefGoogle ScholarPubMed
Anthony, J P, Sexton, T J, Neumaier, J F (2000). Antidepressant-induced regulation of 5-HT1B RNA in rat dorsal raphe nucleus reverses rapidly after drug discontinuation. J Neurosci Res 61: 82–7.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Li, Q, Muma, N A, Battaglia, G, Kar, L D (1997b). Fluoxetine gradually increases [I-125]DOI-labelled 5-HT2A/2C receptors in the hypothalamus without changing the levels of G(q)- and G(11)-proteins. Brain Res 775: 225–8.CrossRefGoogle Scholar
Bristow, L J, O'Connor, D, Watts, R, Duxon, M S, Hutson, P H (2000). Evidence for accelerated desensitisation of 5-HT2C receptors following combined treatment with fluoxetine and the 5-HT1A receptor antagonist, WAY 100, 635, in the rat. Neuropharmacology 39: 1222–36.CrossRefGoogle Scholar
Yamauchi, M, Tatebayashi, T, Nagase, K, Kojima, M, Imanishi, T (2004). Chronic treatment with fluvoxamine desensitizes 5-HT2C receptor-mediated hypolocomotion in rats. Pharmacol Biochem Behav 78: 683–9.CrossRefGoogle ScholarPubMed
Laakso, A, Palvimaki, E P, Kuoppamaki, M, Syvalahti, E, Hietala, J (1996). Chronic citalopram and fluoxetine treatments upregulate 5-HT2C receptors in the rat choroid plexus. Neuropsychopharmacology 15: 143–51.CrossRefGoogle ScholarPubMed
Palvimaki, E P, Majasuo, H, Syvalahti, E, Hietala, J (2005). Serotonin 5-HT2C receptor-mediated phosphoinositide hydrolysis in rat choroid plexus after fluoxetine and citalopram treatments. Pharmacol Res 51: 419–25.CrossRefGoogle ScholarPubMed
Cremers, T I F H, Giorgetti, M, Bosker, F J, et al. (2004). Inactivation of 5-HT2C receptors potentiates consequences of serotonin reuptake blockade. Neuropsychopharmacology 29: 1782–9.CrossRefGoogle ScholarPubMed
Boothman, L J, Mitchell, S N, Sharp, T (2006). Investigation of the SSRI augmentation properties of 5-HT(2) receptor antagonists using in vivo microdialysis. Neuropharmacology 50: 726–32.CrossRefGoogle ScholarPubMed
Cremers, T I, Rea, K, Bosker, F J, et al. (2007). Augmentation of SSRI effects on serotonin by 5-HT2C antagonists: mechanistic studies. Neuropsychopharmacology 32: 1550–7.CrossRefGoogle ScholarPubMed
Lesch, K P, Hough, C J, Aulakh, C S, et al. (1992). Fluoxetine modulates G protein alpha-S, alpha-Q, and alpha-12 subunit messenger-RNA expression in rat brain. Eur J Pharmacol Mol Pharmacol 227: 233–7.CrossRefGoogle ScholarPubMed
Rantamaki, T, Hendolin, P, Kankaanpaa, A, et al. (2007). Pharmacologically diverse antidepressants rapidly activate brain-derived neurotrophic factor receptor TrkB and induce phospholipase-Cgamma signaling pathways in mouse brain. Neuropsychopharmacology 32: 2152–62.CrossRefGoogle ScholarPubMed
Qu, Y, Chang, L, Klaff, J, Seemann, R, Greenstein, D, Rapoport, S I (2006). Chronic fluoxetine upregulates arachidonic acid incorporation into the brain of unanesthetized rats. Eur Neuropsychopharmacol 16: 561–71.CrossRefGoogle ScholarPubMed
Donati, R J, Rasenick, M M (2003). G protein signaling and the molecular basis of antidepressant action. Life Sci 73: 1–17.CrossRefGoogle ScholarPubMed
Conti, B, Maier, R, Barr, A M, et al. (2007). Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine. Mol Psychiatry 12: 167–89.CrossRefGoogle ScholarPubMed
Rausch, J L, Gillespie, C F, Fei, Y, et al. (2002). Antidepressant effects on kinase gene expression patterns in rat brain. Neurosci Lett 334: 91–4.CrossRefGoogle ScholarPubMed
Fumagalli, F, Molteni, R, Calabrese, F, Frasca, A, Racagni, G, Riva, M A (2005). Chronic fluoxetine administration inhibits extracellular signal-regulated kinase 1/2 phosphorylation in rat brain. J Neurochem 93: 1551–60.CrossRefGoogle ScholarPubMed
Morinobu, S, Russel, D S, Sugawara, S, Takahashi, M, Fujimaki, K (2000). Regulation of phosphorylation of cyclic AMP response element-binding protein by paroxetine treatments. Clin Neuropharmacol 23: 106–09.CrossRefGoogle ScholarPubMed
Vinet, J, Carra, S, Blom, J M, Brunello, N, Barden, N, Tascedda, F (2004). Chronic treatment with desipramine and fluoxetine modulate BDNF, CaMKKalpha and CaMKKbeta mRNA levels in the hippocampus of transgenic mice expressing antisense RNA against the glucocorticoid receptor. Neuropharmacology 47: 1062–9.CrossRefGoogle ScholarPubMed
Tiraboschi, E, Tardito, D, Kasahara, J, et al. (2004). Selective phosphorylation of nuclear CREB by fluoxetine is linked to activation of CaM kinase IV and MAP kinase cascades. Neuropsychopharmacology 29: 1831–40.CrossRefGoogle ScholarPubMed
Koch, J M, Kell, S, Aldenhoff, J B (2003). Differential effects of fluoxetine and imipramine on the phosphorylation of the transcription factor CREB and cell viability. J Psychiatric Res 37: 53–9.CrossRefGoogle ScholarPubMed
Dagestad, G, Kuipers, S D, Messaoudi, E, Bramham, C R (2006). Chronic fluoxetine induces region-specific changes in translation factor eIF4E and eEF2 activity in the rat brain. Eur J Neurosci 23: 2814–8.CrossRefGoogle ScholarPubMed
Cassel, S, Carouge, D, Gensburger, C, et al. (2006). Fluoxetine and cocaine induce the epigenetic factors MeCP2 and MBD1 in adult rat brain. Mol Pharmacol 70: 487–92.CrossRefGoogle ScholarPubMed
Schroeder, F A, Lin, CL, Crusio, W E, Akbarian, S (2007). Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry 62: 55–64.CrossRefGoogle ScholarPubMed
Conley, R K, Hutson, P H (2007). Effects of acute and chronic treatment with fluoxetine on stress-induced hyperthermia in telemetered rats and mice. Eur J Pharmacol 564: 138–45.CrossRefGoogle ScholarPubMed
Zhang, Y H, Raap, D K, Garcia, F, et al. (2000). Long-term fluoxetine produces behavioral anxiolytic effects without inhibiting neuroendocrine responses to conditioned stress in rats. Brain Res 855: 58–66.CrossRefGoogle ScholarPubMed
Stout, S C, Owens, M J, Nemeroff, C B (2002). Regulation of corticotropin-releasing factor neuronal systems and hypothalamic–pituitary–adrenal axis activity by stress and chronic antidepressant treatment. J Pharmacol Exp Ther 300: 1085–92.CrossRefGoogle ScholarPubMed
Csoka, A, Bahrick, A, Mehtonen, O P (2008). Persistent sexual dysfunction after discontinuation of selective serotonin reuptake inhibitors. J Sex Med 5: 227–33.CrossRefGoogle ScholarPubMed
Gobbi, M, Crespi, D, Foddi, M C, et al. (1997). Effects of chronic treatment with fluoxetine and citalopram on 5-HT uptake, 5-HT1B autoreceptors, 5-HT3 and 5-HT4 receptors in rats. Naunyn Schmiede Arch Pharmacol 356: 22–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×