Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T05:18:38.853Z Has data issue: false hasContentIssue false

10 - Floods from fossae: a review of Amazonian-aged extensional–tectonic megaflood channels on Mars

Published online by Cambridge University Press:  04 May 2010

Devon M. Burr
Affiliation:
University of Tennessee
Paul A. Carling
Affiliation:
University of Southampton
Victor R. Baker
Affiliation:
University of Arizona
Get access

Summary

Summary

The four youngest megaflood channels on Mars – Mangala Valles, Marte Vallis, Grjotá Valles and Athabasca Valles – date to the Amazonian Period and originate at fissures. The channels show common in-channel morphological indications of flood activity (streamlined forms, longitudinal lineations, scour), as well as evidence for volcanic, tectonic, sedimentary and/or glacial/ground ice processes. The fissure sources and channel termini have varied expressions, suggesting various triggering mechanisms and fates for the floodwaters. Possible triggering mechanisms include magmatic processes (dyke intrusion), tectonic processes (extensional faulting) and a combination of both types of processes. Surface morphology suggests that each of these mechanisms may have operated at different times and locations. Upon reaching the surface, the water likely would have fountained at least a few tens of metres above the surface, producing some water and/or ice droplets at the fountain margins. The likely sources of the floodwater are subsurface aquifers of a few kilometres' thickness and a few tens of degrees Celsius in temperature.

Introduction

Megaflooding on Mars has varied in origin and amount throughout the history of the planet. During the Noachian Period, the most ancient period, flooding originated from crater basins (Irwin and Grant, this volume Chapter 11). During the Early Hesperian Epoch, megafloods originated at chaos terrain often set within Valles Marineris chasmata (Coleman and Baker, this volume Chapter 9). During the Amazonian Period, the most recent period, megaflooding originated from fossae produced by extensional tectonism.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bargery, A. S. and Wilson, L. (2006). Modelling water flow with bedload on the surface of Mars. Lunar and Planetary Science Conference XXXVII, Abstract 1218, Lunar and Planetary Institute, Houston, Texas (CD ROM).Google Scholar
Berman, D. C. and Hartmann, W. K. (2002). Recent fluvial, volcanic, and tectonic activity on the Cerberus Plains of Mars. Icarus, 159, 1–17.CrossRefGoogle Scholar
Berman, D. C., Hartmann, W. K. and Burr, D. M. (2001). Marte Vallis and the Cerberus Plains: evidence of young water flow on Mars. Lunar and Planetary Science Conference XXXII, Abstract 1732, Lunar and Planetary Institute, Houston, Texas (CD ROM).Google Scholar
Burr, D. M. (2005). Clustered streamlined forms in Athabasca Valles, Mars: evidence for sediment deposition during floodwater ponding. Geomorphology, 69, 242–252.CrossRefGoogle Scholar
Burr, D. M. and Parker, A. H. (2006). Grjotá Valles and implications for flood sediment deposition on Mars. GeophysicalResearch Letters, 33, L22201, doi:10.1029/ 2006GL028011.Google Scholar
Burr, D. M., McEwen, A. S. and Sakimoto, S. E. H. (2002a). Recent aqueous floods from the Cerberus Fossae, Mars. Geophysical Research Letters, 29 (1), doi:10.1029/ 2001GL013345.CrossRefGoogle Scholar
Burr, D. M., Grier, J. A., McEwen, A. S. and Keszthelyi, L. P. (2002b). Repeated aqueous flooding from the Cerberus Fossae: evidence for very recently extant, deep groundwater on Mars. Icarus, 159, 53–73.CrossRefGoogle Scholar
Burr, D. M., Carling, P. A., Beyer, R. A. and Lancaster, N. (2004). Flood-formed dunes in Athabasca Valles, Mars: morphology, modeling, and implications. Icarus, 171, 68–83.CrossRefGoogle Scholar
Burr, D. M., Soare, R. J., Wan Bun Tseung, J.-M. and Emery, J. P. (2005). Young (late Amazonian), near surface, ground ice features near the equator, Athabasca Valles, Mars. Icarus, 178, 56–73.CrossRefGoogle Scholar
Burr, D. M., Bruno, B. C., Lanagan, P. D.et al. (2008). Mesoscale raised rim depressions (MRRDs) on Earth: a review of the characteristics, processes, and spatial distributions of analogs for Mars. Planetary and Space Science, doi:10.1016/j.pss.2008.11.011.Google Scholar
Carr, M. H. (1979). Formation of Martian flood features by release of water from confined aquifers. Journal of Geophysical Research, 84, 2995–3007.CrossRefGoogle Scholar
Carr, M. H. (1996). Water on Mars. Oxford: Oxford University Press.Google Scholar
Chapman, M. G. and Tanaka, K. L. (1993). Geologic Map of the MTM -05152 and -10152 Quadrangles, Mangala Valles Region of Mars, scale 1:500,000. U.S. Geological Survey Investigations Series Map, I-2294.Google Scholar
Christensen, P. R. and 21 others (2003). Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science, 300 (5628), 2056–2061.CrossRefGoogle ScholarPubMed
Clifford, S. M. (1993). A model for the hydrologic and climatic behavior of water on Mars. Journal of Geophysical Research, 98, 10,973–11,016.CrossRefGoogle Scholar
Clifford, S. M. and Parker, T. J. (2001). The evoluton of the martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154, 40–79.CrossRefGoogle Scholar
Craddock, R. A. and Greeley, R. (1994). Geologic map of the MTM -20147 Quadrangle, Mangala Valles Region of Mars, scale 1:500,000, U.S. Geological Survey Miscellaneous Investigation Series Map I-2310.Google Scholar
Di Achille, G., Ori, G. G., Reiss, D.et al. (2006). A steep fan at Coprates Catena, Valles Marineris, Mars, as seen by HRSC data. Geophysical Research Letters, 33 (7), CiteID L07204, doi:10.1029/2005GL025435.CrossRefGoogle Scholar
Edgett, K. S. and Malin, M. C. (2003). The layered upper crust of Mars: an update on MGS MOC observations after two Mars years in the mapping orbit. In Lunar and Planetary Science Conference XXXIV, Abstract 1124, Lunar and Planetary Institute, Houston, Texas (CD ROM).Google Scholar
Fairén, A. G., Dohm, J. M., Uceda, E. R.et al. (2005). Prime candidate sites for astrobiological exploration through the hydrogeological history of Mars. Planetary and Space Science, 53, 1355–1375, doi:10.1016/j.pss.2005.06.007.CrossRefGoogle Scholar
Fuller, E. R. and Head, III, J. W. (2002). Amazonis Planitia: the role of geologically recent volcanism and sedimentation in the formation of the smoothest plains on Mars. Journal of Geophysical Research, 107 (E10), 5081, 2002JE001842.CrossRefGoogle Scholar
Gaidos, E. and Marion, G. (2003). Geological and geochemical legacy of a cold, early Mars. Journal of Geophysical Research, 108 (E6), 5005, doi:10.1029/2002JE002000.CrossRefGoogle Scholar
Ghatan, G. J., Head, J. W. and Wilson, L. (2005). Mangala Valles, Mars: assessment of early stages of flooding and downstream flood evolution. Earth Moon Planets, 96 (1–2), 1–57, doi:10.1007/s11038–005-9009-y.CrossRefGoogle Scholar
Greeley, R. and Fagents, S. A. (2001). Icelandic pseudocraters as analogs to some volcanic cones on Mars. Journal of Geophysical Research, 106, 20527–20546.CrossRefGoogle Scholar
Hanna, J. C. and Phillips, R. J. (2005). Hydrological modeling of the Martian crust with application to the pressurization of aquifers. Journal of Geophysical Research, 110, E01004, doi:10.1029/2004JE002330.CrossRefGoogle Scholar
Hanna, J. C. and Phillips, R. J. (2006). Tectonic pressurization of aquifers in the formation of Mangala and Athabasca Valles, Mars. Journal of Geophysical Research, 111, E03003, doi:10.1029/2005JE002546.CrossRefGoogle Scholar
Hartmann, W. K. (1999). Martian cratering VI: Crater count isochrones and evidence for recent volcanism from Mars Global Surveyor. Meteoritics and Planetary Science, 34, 168–177.CrossRefGoogle Scholar
Hartmann, W. K. (2005). Martian cratering 8: Isochron refinement and the chronology of Mars. Icarus, 174 (2), 294–320.CrossRefGoogle Scholar
Hartmann, W. K. and Neukum, G. (2001). Cratering chronology and evolution of Mars. Space Science Reviews, 96, 165–194.CrossRefGoogle Scholar
Head, J. W. III, Wilson, L. and Mitchell, K. L. (2003). Generation of recent massive water floods at Cerberus Fossae, Mars by dike emplacement, cryospheric cracking, and confined aquifer groundwater release. Geophysical Research Letters, 30 (11), 1577, doi:10.1029/2003GL0117135.CrossRefGoogle Scholar
Head, J. W., Marchant, D. R. and Ghatan, G. J. (2004). Glacial deposits on the rim of a Hesperian-Amazonian outflow channel source trough: Mangala Valles, Mars. Geophysical Research Letters, 31, L10701, doi:10.1029/ 2004GL020294.CrossRefGoogle Scholar
House, P. K., Pearthree, P. A. and Klawon, J. E. (2001). Historical flood and paleoflood chronology of the Lower Verde River, Arizona: stratigraphic evidence and related uncertainties. In Ancient Floods, Modern Hazards: Principles and Applications of Paleoflood Hydrology, Water Science and Application Volume 5, American Geophysical Union, pp. 267–293.Google Scholar
Jaeger, W. L., Keszthelyi, L. P., Burr, D. M.et al. (2003). Ring dike structures in the Channeled Scabland as analogs for circular features in Athabasca Valles, Mars. In Lunar and Planetary Science Conference XXXIV, Abstract 2045, Lunar and Planetary Institute, Houston, Texas (CD ROM).Google Scholar
Jaeger, W. L., Keszthelyi, L. P., Burr, D. M.et al. (2005). Basaltic ring structures as an analog for ring features in Athabasca Valles, Mars. In Lunar and Planetary Science Conference XXXVI, Abstract 1886, Lunar and Planetary Institute, Houston, Texas (CD ROM).Google Scholar
Jaeger, W. L., Keszthelyi, L. P., McEwen, A. S., Dundas, C. M. and Russell, P. S. (2007). Athabasca Valles, Mars: a lava-draped channel system. Science, 317, 1709–1711, doi:10.1126/science.1143315.CrossRefGoogle ScholarPubMed
Keszthelyi, L. P., McEwen, A. S. and Thordarson, Th. (2000). Terrestrial analogs and thermal models for martian flood lavas. Journal of Geophysical Research, 105, 15,027–15,049.CrossRefGoogle Scholar
Keszthelyi, L., Thordarson, Th., McEwen, A.et al. (2004a). Icelandic analogs to martian flood lavas. Geochemistry, Geophysics, Geosystems (G 3), 5, Q11014, doi:10.1029/2004GC000758.Google Scholar
Keszthelyi, L., Burr, D. M. and McEwen, A. S. (2004b). Geomorphologic/thermophysical mapping of the Athabasca Region, Mars, using THEMIS infrared imaging. In Lunar and Planetary Science Conference XXXV, Abstract 1657, Lunar and Planetary Institute, Houston, Texas (CD ROM).Google Scholar
Komar, P. D. (1980). Modes of sediment transport in channelized water flows with ramifications to the erosion of the Martian outflow channels. Icarus, 42 (3), 317–329.CrossRefGoogle Scholar
Kossacki, K. J., Markiewicz, W. J., Smith, M. D., Page, D. and Murray, J. (2006). Possible remnants of a frozen mud lake in southern Elysium, Mars. Icarus, 181, 363–374, doi:10.1016/j.icarus.2005.11.018.CrossRefGoogle Scholar
Lanagan, P. D. (2004). Geologic history of the Cerberus Plains, Mars. Ph.D. thesis, University of Arizona, Tucson.
Lanagan, P. D. and McEwen, A. S. (2003). Cerberus Plains volcanism: constraints on temporal emplacement of the youngest flood lavas on Mars. Sixth International Conference on Mars, July 20–25 2003, Pasadena, California, Abstract 3215.Google Scholar
Lanagan, P. D., McEwen, A. S., Keszthelyi, L. P. and Thordarson, Th. (2001). Rootless cones on Mars indicating the presence of shallow equatorial ground ice in recent times. Geophysical Research Letters, 28, 2365–2367.CrossRefGoogle Scholar
Leask, H. J., Wilson, L. and Mitchell, K. L. (2006). Formation of Mangala Fossa, the source of the Mangala Valles, Mars: morphological development as a result of volcano-cryosphere interactions. Journal of Geophysical Research, 112, E02011, doi:10.1029/2005JE002644.Google Scholar
Leask, H. J., Wilson, L. and Mitchell, K. L. (2007). Formation of Mangala Valles outflow channel, Mars: morphological development, and water discharge and duration estimates. Journal of Geophysical Research, 112, E08003, doi:10.1029/006JE002851.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S. (2000). Sedimentary rocks of early Mars. Science, 290 (5498), 1927–1937.CrossRefGoogle ScholarPubMed
Malin, M. C. and Edgett, K. S. (2001). Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission. Journal of Geophysical Research, 106 (E10), 23,429–23,570.CrossRefGoogle Scholar
Manga, M. (2004). Martian floods at Cerberus Fossae can be produced by groundwater discharge. Geophysical Research Letters, 31, L02702, doi:10.1029/2003GL018958.CrossRefGoogle Scholar
McEwen, A. S. and Bierhaus, E. B. (2006). The importance of secondary cratering to age constraints on planetary surfaces. Annual Review of Earth and Planetary Science, 34, 535–567, doi:10.1146/annurev.earth.34.031405.125018.CrossRefGoogle Scholar
McEwen, A. S., Preblich, B. S., Turtle, E. P.et al. (2005). The rayed crater Zunil and interpretations of small impact craters on Mars. Icarus, 176, 351–381.CrossRefGoogle Scholar
McKenzie, D. and Nimmo, F. (1999). The generation of Martian floods by the melting of ground ice above dykes. Nature, 397, 231–233.CrossRefGoogle ScholarPubMed
Milton, D. J. (1973). Water and the processes of degradation in the Martian landscape. Journal of Geophysical Research, 78, 4037–4047.CrossRefGoogle Scholar
Moller, S. C., Poulter, K., Grosfills, E.et al. (2001). Morphology of the Marte Valles channel system. In Lunar and Planetary Science Conference XXXII, Abstract 1382, Lunar and Planetary Institute, Houston, Texas (CD ROM).Google Scholar
Mouginis-Mark, P. (1990). Recent melt water release in the Tharsis region of Mars. Icarus, 84, 362–373.CrossRefGoogle Scholar
Mouginis-Mark, P. J. and Christensen, P. R. (2005). New observations of volcanic features on Mars from the THEMIS instrument. Journal of Geophysical Research, 110, E08007, doi:10.1029/2005JE002421.CrossRefGoogle Scholar
Mouginis-Mark, P. J., Wilson, L., Head, J. W.et al. (1984). Elysium Planitia, Mars: regional geology, volcanology, and evidence for volcano-ground ice interactions. Earth, Moon, and Planets, 30, 149–173.CrossRefGoogle Scholar
Murray, J. B. and 12 co-authors (2005). Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars equator. Nature, 434, 352–356, doi:10.1038/nature03379.CrossRefGoogle ScholarPubMed
,National Academy of Sciences (2007). An Astrogeological Strategy for the Exploration of Mars. Washington DC: National Academies Press.Google Scholar
Neukum, G. and Ivanov, B. A. (1994). Crater size distribution and impact probabilities on the Earth from lunar, terrestrial-planet, and asteroid cratering data. In Hazards Due to Asteroids and Comets, ed. Gehrels, T.. Tucson: University of Arizona Press, pp. 359–416.Google Scholar
Ogawa, Y., Yamagishi, Y. and Kurita, K. (2003). Evaluation of melting process of the permafrost on Mars: its implication for surface features. Journal Geophysical Research, 108 (E4), 8046, doi:10.1029/2002JE001886.CrossRefGoogle Scholar
Page, D. P. and Murray, J. B. (2006). Stratigraphical and morphological evidence for pingo genesis in the Cerberus plains. Icarus, 183, 46–54, doi:10.1016/j.icarus.2006.01.017.CrossRefGoogle Scholar
Plescia, J. B. (1990). Recent flood lavas in the Elysium region of Mars. Icarus, 88, 465–490.CrossRefGoogle Scholar
Plescia, J. B. (2003). Cerberus Fossae, Elysium Mars: a source for lava and water. Icarus, 164, 79–95.CrossRefGoogle Scholar
RiceJr., J. W. Jr., J. W., Parker, T. J., Russell, A. J. and Knudsen, Ó. (2002). Morphology of fresh outflow channel deposits on Mars. In Lunar and Planetary Science Conference XXXIII, Abstract 2026, Lunar and Planetary Institute, Houston, Texas (CD ROM).Google Scholar
Rubin, A. M. (1992). Dike-induced faulting and graben subsidence in volcanic rift zones. Journal of Geophysical Research, 97, 1839–1858.CrossRefGoogle Scholar
Rubin, A. M. and Pollard, D. D. (1987). Origin of blade-like dikes in volcanic rift zones. In Volcanism in Hawaii eds. Decker, R. W., Wright, T. L. and Stauffer, P. H.. U.S. Geological Survey Professional Paper 1350, pp. 1449–1470.Google Scholar
Sakimoto, S. E. H., Reidel, S. and Burr, D. M. (2001). Geologically recent Martian volcanism and flooding in Elysium Planitia and Cerberus Rupes: plains-style eruptions and related water release?Geological Society of America Abstracts with Program (abstract 178–0).Google Scholar
Schultz, R. A., Okubo, C. H., Goudy, C. L. and Wilkins, S. J. (2004). Igneous dikes on Mars revealed by Mars Orbiter Laser Altimeter topography. Geology, 32 (10), 889–892.CrossRefGoogle Scholar
Scott, D. H. and Chapman, M. G. (1991). Mars Elysium Basin: geologic/volumetric analyses of a young lake and exobiologic implications. In Lunar and Planetary Science Conference XXI, 669–677 (abstract).Google Scholar
Sharp, R. P. and Malin, M. C. (1975). Channels on Mars. Geological Society of America Bulletin, 86, 593–609.2.0.CO;2>CrossRefGoogle Scholar
Smith, D. E., Zuber, M. T., Frey, H. V.et al. (1998). Topography of the northern hemisphere of Mars from the Mars Orbiter Laser Altimeter. Science, 279, 1686–1692.CrossRefGoogle ScholarPubMed
Smith, D., Neumann, G., Arvidson, R. E., Guinness, E. A. and Slavney, S. (2003). Mars Global Surveyor Laser Altimeter Mission Experiment Gridded Data Record. NASA Planetary Data System, MGS-M-MOLA-5-MEGDR-L3-V1.0.Google Scholar
Tanaka, K. L. (1986). The stratigraphy of Mars. Journal of Geophysical Research, 91, 139–158.CrossRefGoogle Scholar
Tanaka, K. L. and Chapman, M. G. (1990). The relation of catastrophic flooding of Mangala Valles, Mars, to faulting of Memnonia Fossae and Tharsis volcanism. Journal of Geophysical Research, 95, 14,315–14,323.CrossRefGoogle Scholar
Tanaka, K. L. and Scott, D. H. (1986). The youngest channel system on Mars. In Lunar and Planetary Science Conference XVII, 865–866 (abstract).Google Scholar
Weitz, C. M., Irwin, R. P., Chuang, F. C.Bourke, M. C., and Crown, D. A. (2006). Formation of a terraced fan deposit in Coprates Catena, Mars. Icarus, 184, 436–451, doi:10/1016/j.icarus.2006.05.024.CrossRefGoogle Scholar
Werner, S. C., Gasselt, S. and Neukem, G. (2003). Continual geological activity in Athabasca Valles, Mars. Journal of Geophysical Research, 108 (E12), 8081, doi:10.1029/2002JE002020.CrossRefGoogle Scholar
Wessel, P. and Smith, W. H. F. (1998). New, improved version of Generic Mapping Tools released. EOS Transactions, American Geophysical Union, 79 (47), 579.CrossRefGoogle Scholar
Williams, R. M. E. and Edgett, K. S. (2005). Valleys in the Martian rock record. In Lunar and Planetary Science Conference XXXVI, Abstract 1099, Lunar and Planetary Institute, Houston, Texas (CD ROM).Google Scholar
Williams, R. M. E., Malin, M. C. and Edgett, K. S. (2005). Remnants of the courses of fine-scale, precipitation-fed runoff streams preserved in the Martian rock record. In Lunar and Planetary Science Conference XXXVI, Abstract 1173, Lunar and Planetary Institute, Houston, Texas (CD ROM).Google Scholar
Wilson, L. and Head, J. W. (2002). Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: model and implications. Journal of Geophysical Research, 107 (E8), 5057, doi:10.1029/2001JE001593.CrossRefGoogle Scholar
Wilson, L. and Head III, J. W. (2004). Evidence for a massive phreatomagmatic eruption in the initial stages of formation of the Mangala Valles outflow channel, Mars. Geophysical Research Letters, 31, L15701, doi:10.1029/2004GL020322.CrossRefGoogle Scholar
Wilson, L. and Heslop, S. E. (1990). Clast sizes in terrestrial and martian ignimbrite lag deposits. Journal of Geophysical Research, 95, 17309–17314.CrossRefGoogle Scholar
Zimbelman, J. R. (1989). Geological mapping of southern Mangala Valles, Mars. In Lunar and Planetary Science Conference XX, 1239–1240 (abstract).Google Scholar
Zimbelman, J. R., Craddock, R. A., Greeley, R. and Kuzmin, R. O. (1992). Volatile history of Mangala Valles, Mars. Journal of Geophysical Research, 97, 18,309–18,317.CrossRefGoogle Scholar
Zimbelman, J. R., Craddock, R. A. and Greeley, R. (1994). Geologic Map of the MTM-15147 Quadrangle, Mangala Valles Region of Mars, scale 1:500,000. U.S. Geological Survey Miscellaneous Investigations Series Map I-2402.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×