Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-23T22:25:21.563Z Has data issue: false hasContentIssue false

13 - Babesiosis of cattle

Published online by Cambridge University Press:  21 August 2009

R. E. Bock
Affiliation:
Tick Fever Centre Biosecurity Queensland Queensland Department of Primary Industries Fisheries 280 Grindle Road Wacol Qld 4076 Australia
L. A. Jackson
Affiliation:
Animal Research Institute Biosecurity Queensland Department of Primary Industries Fisheries Locked Mail Bag No. 4 Moorooka Qld 4105 Australia
A. J. De Vos
Affiliation:
Tick Fever Centre Biosecurity Queensland Queensland Department of Primary Industries Fisheries 280 Grindle Road Wacol Qld 4076 Australia
W. K. Jorgensen
Affiliation:
Animal Research Institute Department of Primary Industries Fisheries Locked Mail Bag No. 4 Moorooka Qld 4105 Australia
Alan S. Bowman
Affiliation:
University of Aberdeen
Patricia A. Nuttall
Affiliation:
Centre for Ecology and Hydrology, Swindon
Get access

Summary

INTRODUCTION

Babesiosis (also known as tick fever or cattle fever) is caused by intraerythrocytic protozoan parasites of the genus Babesia that infect a wide range of domestic and wild animals, and occasionally humans. The disease is tick-transmitted and distributed worldwide. Economically, tick fever is the most important arthropod-borne disease of cattle, with vast areas of Australia, Africa, South and Central America and the United States continuously under threat. Tick fever was the first disease for which transmission by an arthropod to a mammal was implicated at the turn of the twentieth century, and is the first disease to be eradicated from a continent (North America). This review describes the biology of Babesia spp. in the host and the tick, the scale of the problem to the cattle industry, the various components of control programmes, epidemiology, pathogenesis, immunity, vaccination and future research. The emphasis is on Babesia bovis and Babesia bigemina, the two most important species infecting cattle.

Babes (1888) investigated disease outbreaks causing haemoglobinuria in cattle in Romania in 1888 and was the first to describe piroplasms in the blood of cattle. He believed it to be a bacterium and named it Haematococcus bovis (Angus, 1996). Shortly afterwards investigations by Smith and Kilborne (1893) in the United States of America demonstrated the causative organism of ‘Texas Fever’ (babesiosis), which they called Pyrosoma bigeminum (= Babesia bigemina).

Type
Chapter
Information
Ticks
Biology, Disease and Control
, pp. 281 - 307
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agbede, R. I. S., Kemp, D. H. & Hoyte, H. M. D. (1986). Secretory and digest cells of female Boophilus microplus: invasion and development of Babesia bovis – light and electron microscope studies. In Morphology, Physiology and Behavioural Biology of Ticks, eds. Sauer, J. R. and Hair, A. J., pp. 457–471. New York: John Wiley.Google Scholar
Ahmed, J. S. (2002). The role of cytokines in immunity and immunopathogenesis of piroplasmoses. Parasitology Research 88 (Suppl.), S48–S50.CrossRefGoogle Scholar
Allred, D. R. (2003). Babesiosis: persistence in the face of adversity. Trends in Parasitology 19, 51–55.CrossRefGoogle ScholarPubMed
Allred, D. R. & Al-Khedery, B. (2004). Antigenic variation and cytoadhesion in Babesia bovis and Plasmodium falciparum: different logics achieve the same goal. Molecular and Biochemical Parasitology 134, 27–35.CrossRefGoogle ScholarPubMed
Allred, D. R. & Al-Khedery, B. (2006). Antigenic variation as an exploitable weakness of babesial parasites. Veterinary Parasitology 138, 50–60.CrossRefGoogle ScholarPubMed
Allsopp, M. T., Cavalier-Smith, T., Waal, D. T. & Allsopp, B. A. (1994). Phylogeny and evolution of the piroplasms. Parasitology 108, 147–152.CrossRefGoogle ScholarPubMed
Angus, B. M. (1996). The history of the cattle tick Boophilus microplus in Australia and achievements in its control. International Journal of Parasitology 26, 1341–1355.CrossRefGoogle ScholarPubMed
,Anonymous (1984). Ticks and Tick-Borne Disease Control: A Practical Field Manual, vol 2, Tick-Borne Disease Control. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
Auger, M. J. & Ross, J. A. (1992). The biology of the macrophage. In The Macrophage, eds. Lewis, C. E. and McGee, J. O. D., pp. 1–57. Oxford, UK: IRL Press.Google Scholar
Babes, V. (1888). Sur l'hémoglobinurie bactérienne du boeuf. Comptes rendus hebdomadaires des séances de l'Academie des Sciences 107, 692–694.Google Scholar
Barker, S. C. & Murrell, A. (2002). Phylogeny, evolution and historical zoogeography of ticks: a review of recent progress. Experimental and Applied Acarology 28, 55–68.CrossRefGoogle ScholarPubMed
Barker, S. C. & Murrell, A. (2004). Systematics and evolution of ticks with a list of valid genus and species. Parasitology 129, S15–S36.CrossRefGoogle ScholarPubMed
Berens, S. J., Brayton, K. A., Molloy, J. B., et al. (2005). Merozoite surface antigen 2 proteins of Babesia bovis vaccine breakthrough isolates contain a unique hypervariable region composed of degenerate repeats. Infection and Immunity 73, 7180–7189.CrossRefGoogle ScholarPubMed
Bock, R. E. & Vos, A. J. (2001). Immunity following use of Australian tick fever vaccine: a review of the evidence. Australian Veterinary Journal 79, 832–839.CrossRefGoogle Scholar
Bock, R. E., Vos, A. J., Kingston, T. G. & McLellan, D. J. (1997 a). Effect of breed of cattle on innate resistance to infection with Babesia bovis, B. bigemina and Anaplasma marginale. Australian Veterinary Journal 75, 337–340. [Published erratum appears in Australian Veterinary Journal (1997) 75, 449.]CrossRefGoogle ScholarPubMed
Bock, R. E., Vos, A. J., Kingston, T. G., Shiels, I. A. & Dalgliesh, R. J. (1992). Investigations of breakdowns in protection provided by living Babesia bovis vaccine. Veterinary Parasitology 43, 45–56.CrossRefGoogle ScholarPubMed
Bock, R. E., Vos, A. J., Lew, A. E., Kingston, T. G. & Fraser, I. R. (1995). Studies on failure of T strain live Babesia bovis vaccine. Australian Veterinary Journal 72, 296–300.CrossRefGoogle Scholar
Bock, R. E., Vos, A. J., Rayner, A. C., et al. (1997b). Assessment of the risk of tick fever mortalities in north-western Queensland beef industry. In Challenging the Boundaries, Proceedings of Annual Conference, Australian Association of Cattle Veterinarians, pp. 175–182. Brisbane, Australia: Australian Veterinary Association.Google Scholar
Bock, R. E., Jorgensen, W. K. & Molloy, J. B. (2004). Bovine babesiosis. In Manual of Standards for Diagnostic Tests and Vaccines for Terrestrial Animals, vol. 1, pp. 507–518. Paris: Office International des Épizooties. Available online at www.oie.int/eng/normes/mmanual/A_00059.htm.Google Scholar
Bock, R. E., Kingston, T. G. & Vos, A. J. (1999 a). Effect of breed of cattle on transmission rate and innate resistance to infection with Babesia bovis and B. bigemina transmitted by Boophilus microplus. Australian Veterinary Journal 77, 461–464.CrossRefGoogle Scholar
Bock, R. E., Kingston, T. G., Standfast, N. F. & Vos, A. J. (1999 b). Effect of cattle breed on innate resistance to inoculations of Babesia bigemina. Australian Veterinary Journal 77, 465–466.CrossRefGoogle ScholarPubMed
Bock, R. E., Lew, A. E., Minchin, C. M., Jeston, P. J. & Jorgensen, W. K. (2000). Application of PCR assays to determine the genotype of Babesia bovis parasites isolated from cattle with clinical babesiosis soon after vaccination against tick fever. Australian Veterinary Journal 78, 179–181.CrossRefGoogle ScholarPubMed
Böse, R., Jorgensen, W. K., Dalgliesh, R. J., Friedhoff, K. T. & Vos, A. J. (1995). Current state and future trends in the diagnosis of babesiosis. Veterinary Parasitology 57, 61–74.CrossRefGoogle Scholar
Bouattour, A., Darghouth, M. A. & Daoud, A. (1999). Distribution and ecology of ticks (Acari: Ixodidae) infesting livestock in Tunisia: an overview of eight years' field collections. Parassitologia 41 (Suppl.), S5–S10.Google Scholar
Brown, W. C. & Logan, K. S. (1992). Babesia bovis: bovine helper T cell lines reactive with soluble and membrane antigens of merozoites. Experimental Parasitology 74, 188–199.CrossRefGoogle ScholarPubMed
Brown, W. C. & Palmer, G. H. (1999). Designing blood-stage vaccines against Babesia bovis and B. bigemina. Parasitology Today 15, 275–281.CrossRefGoogle ScholarPubMed
Brown, W. C., Estes, D. M., Chantler, S. E., Kegerreis, K. A. & Suarez, C. E. (1998). DNA and a CpG oligonucleotide derived from Babesia bovis are mitogenic for bovine B cells. Infection and Immunity 66, 5423–5432.Google Scholar
Brown, W. C., Logan, K. S., Wagner, G. G. & Tetzlaff, C. L. (1991). Cell-mediated immune responses to Babesia bovis merozoite antigens in cattle following infection with tick-derived or cultured parasites. Infection and Immunity 59, 2418–2426.Google ScholarPubMed
Brown, W. C., Norimine, J., Goff, W. L., Suarez, C. E. & McElwain, T. F. (2006 a). Prospects for recombinant vaccines against Babesia bovis and related parasites. Parasite Immunology 28, 315–327.CrossRefGoogle ScholarPubMed
Brown, W. C., Norimine, J., Knowles, D. P. & Goff, W. L. (2006 b). Immune control of Babesia bovis infection. Veterinary Parasitology 138, 75–87.CrossRefGoogle ScholarPubMed
Brown, W. C., Zhao, S., Woods, V. M., Dobbelaere, D. A. & Rice-Ficht, A. C. (1993). Babesia bovis-specific CD4+ T cell clones from immune cattle express either the Th0 or Th1 profile of cytokines. Revue d'Elevage et de Médecine Vétérinaire des Pays Tropicaux 46, 65–69.Google ScholarPubMed
Caeiro, V. (1999). General review of tick species present in Portugal. Parassitologia 41, 11–15.Google ScholarPubMed
Callow, L. L. (1977). Vaccination against bovine babesiosis. In Immunity to Blood Parasites of Man and Animals, eds. Miller, L. H., Pino, J. A. & McKelvey, J. J. Jr, pp. 121–149. New York: Plenum Press.CrossRefGoogle Scholar
Callow, L. L. (1979). Some aspects of the epidemiology and control of bovine babesiosis in Australia. Journal of the South African Veterinary Association 50, 353–356.Google ScholarPubMed
Callow, L. L. (1984). Piroplasms. In Animal Health in Australia, vol. 5, Protozoal and Rickettsial Diseases, pp. 121–160. Canberra, Australia: Australian Bureau of Animal Health.Google Scholar
Callow, L. L. & Dalgliesh, R. J. (1980). The development of effective, safe vaccination against babesiosis and anaplasmosis in Australia. In Ticks and Tick-Borne Diseases, Proceedings of a Symposium held at the 56th Annual Conference of the Australian Veterinary Association, eds. Johnston, L. A. Y. and Cooper, M. G., pp. 4–8. Townsville, Australia: Australian Veterinary Association.Google Scholar
Callow, L. L. & Hoyte, H. M. D. (1961). Transmission experiments using Babesia bigemina, Theileria mutans, Borrelia sp. and the cattle tick Boophilus microplus. Australian Veterinary Journal 37, 381–390.CrossRefGoogle Scholar
Callow, L. L., Dalgliesh, R. J. & Vos, A. J. (1997). Development of effective living vaccines against bovine babesiosis: the longest field trial?International Journal for Parasitology 27, 747–767.CrossRefGoogle ScholarPubMed
Callow, L. L., McGregor, W., Parker, R. J. & Dalgliesh, R. J. (1974 a). The immunity of cattle to Babesia argentina after drug sterilization of infections of varying duration. Australian Veterinary Journal 50, 6–11.CrossRefGoogle ScholarPubMed
Callow, L. L., McGregor, W., Parker, R. J. & Dalgliesh, R. J. (1974 b). Immunity of cattle to Babesia bigemina following its elimination from the host, with observations on antibody levels detected by the indirect fluorescent antibody test. Australian Veterinary Journal 50, 12–15.CrossRefGoogle ScholarPubMed
Callow, L. L., Mellors, L. T. & McGregor, W. (1979). Reduction in virulence of Babesia bovis due to rapid passage in splenectomized cattle. International Journal for Parasitology 9, 333–338.CrossRefGoogle ScholarPubMed
Callow, L. L., Quiroga, Q. C. & McCosker, P. J. (1976). Serological comparison of Australian and South American strains of Babesia argentina and Anaplasma marginale. International Journal for Parasitology 6, 307–310.CrossRefGoogle ScholarPubMed
Callow, L. L., Rogers, R. J. & de Vos, A. J. (1993). Tick-borne diseases: cattle pathology and serology. In Australian Standard Diagnostic Techniques for Animal Diseases, eds. Corner, L. A. and Bagust, T. J., pp. 1–16. East Melbourne, Australia: CSIRO Information Services.Google Scholar
Carson, C. A., Timms, P., Cowman, A. F. & Stewart, N. P. (1990). Babesia bovis: evidence for selection of subpopulations during attenuation. Experimental Parasitology 70, 404–410.CrossRefGoogle ScholarPubMed
Combrink, M. P. & Troskie, P. C. (2004). Effect of diminazene block treatment on live redwater vaccine reactions. Onderstepoort Journal of Veterinary Research 71, 113–117.CrossRefGoogle ScholarPubMed
Court, R. A., Jackson, L. A. & Lee, R. P. (2001). Elevated anti-parasitic activity in peripheral blood monocytes and neutrophils of cattle infected with Babesia bovis. International Journal for Parasitology 31, 29–37.CrossRefGoogle ScholarPubMed
Cowman, A. F., Timms, P. & Kemp, D. J. (1984). DNA polymorphisms and subpopulations in Babesia bovis. Molecular and Biochemical Parasitology 11, 91–103.CrossRefGoogle ScholarPubMed
Criado-Fornelio, A., Martinez-Marcos, A., Buling-Sarana, A. & Barba-Carretero, J. C. (2003). Molecular studies on Babesia, Theileria and Hepatozoon in southern Europe. II. Phylogenetic analysis and evolutionary history. Veterinary Parasitology 114, 173–194.CrossRefGoogle ScholarPubMed
Dalgliesh, R. J. (1972). Effects of low temperature preservation and route of inoculation on infectivity of Babesia bigemina in blood diluted with glycerol. Research in Veterinary Science 13, 540–545.Google ScholarPubMed
Dalgliesh, R. J. (1993). Babesiosis. In Immunology and Molecular Biology of Parasite Infections, ed. Warren, S. K., pp. 352–383. Oxford, UK: Blackwell Scientific Publications.Google Scholar
Dalgliesh, R. J. & Stewart, N. P. (1982). Some effects of time, temperature and feeding on infection rates with Babesia bovis and Babesia bigemina in Boophilus microplus larvae. International Journal for Parasitology 12, 323–326.CrossRefGoogle ScholarPubMed
Dalgliesh, R. J. & Stewart, N. P. (1983). The use of tick transmission by Boophilus microplus to isolate pure strains of Babesia bovis, Babesia bigemina and Anaplasma marginale from cattle with mixed infections. Veterinary Parasitology 13, 317–323.CrossRefGoogle ScholarPubMed
Dalgliesh, R. J., Callow, L. L., Mellors, L. T. & McGregor, W. (1981 a). Development of a highly infective Babesia bigemina vaccine of reduced virulence. Australian Veterinary Journal 57, 8–11.CrossRefGoogle ScholarPubMed
Dalgliesh, R. J., Jorgensen, W. K. & Vos, A. J. (1990). Australian frozen vaccines for the control of babesiosis and anaplasmosis in cattle: a review. Tropical Animal Health and Production 22, 44–52.CrossRefGoogle ScholarPubMed
Dalgliesh, R. J., Stewart, N. P. & Callow, L. L. (1978). Transmission of Babesia bigemina by transfer of adult male Boophilus microplus [letter]. Australian Veterinary Journal 54, 205–206.Google Scholar
Dalgliesh, R. J., Stewart, N. P. & Rodwell, B. J. (1981 b). Increased numbers of strahlenkörper in Boophilus microplus ticks ingesting a blood-passaged strain of Babesia bigemina. Research in Veterinary Science 31, 350–352.Google ScholarPubMed
Dalrymple, B. P. (1993). Molecular variation and diversity in candidate vaccine antigens from Babesia. Acta Tropica 53, 227–238.CrossRefGoogle ScholarPubMed
Vos, A. J. (1978). Immunogenicity and pathogenicity of three South African strains of Babesia bovis in Bos indicus cattle. Onderstepoort Journal of Veterinary Research 45, 119–124.Google ScholarPubMed
de Vos, A. J. & Jorgensen, W. K. (1992). Protection of cattle against babesiosis in tropical and subtropical countries with a live, frozen vaccine. In Tick Vector Biology: Medical and Veterinary Aspects, eds. Fivaz, B. H., Petney, T. N. & Horak, I. G., pp. 159–174. Heidelberg, Germany: Springer-Verlag.CrossRefGoogle Scholar
Vos, A. J., Bessenger, R. & Fourie, C. G. (1982). Virulence and heterologous strain immunity of South African and Australian Babesia bovis strains with reduced pathogenicity. Onderstepoort Journal of Veterinary Research 49, 133–136.Google ScholarPubMed
Vos, A. J., Combrink, M. P. & Bessenger, R. (1982). Babesia bigemina vaccine: comparison of the efficacy and safety of Australian and South African strains under experimental conditions in South Africa. Onderstepoort Journal of Veterinary Research 49, 155–158.Google ScholarPubMed
de Vos, A. J., Dalgliesh, R. J. & Callow, L. L. (1987). Babesia. In Immune Responses in Parasitic Infections: Immunology, Immunopathology and Immunoprophylaxis, vol. 3, ed. Soulsby, E. J. L., pp. 183–222. Boca Raton, FL: CRC Press.Google Scholar
Vos, A. J., Dalgliesh, R. J. & McGregor, W. (1986). Effect of imidocarb dipropionate prophylaxis on the infectivity and immunogenicity of a Babesia bovis vaccine in cattle. Australian Veterinary Journal 63, 174–178.CrossRefGoogle ScholarPubMed
de Vos, A. J., De Waal, D. T. & Jackson, L. A. (2004). Bovine babesiosis. In Infectious Diseases of Livestock, vol. 1, eds. Coetzer, J. A. W. & Tustin, R. C., pp. 406–424. Cape Town, South Africa: Oxford University Press.Google Scholar
Waal, D. T. & Combrink, M. P. (2006). Live vaccines against bovine babesiosis. Veterinary Parasitology 138, 88–96.CrossRefGoogle ScholarPubMed
Delbecq, S., Hadj-Kaddour, K., Randazzo, S., et al. (2006). Hydrophobic moieties in recombinant proteins are crucial to generate efficient saponin-based vaccine against apicomplexan Babesia divergens. Vaccine 24, 613–621.CrossRefGoogle Scholar
Edelhofer, R., Kanout, A., Schuh, M. & Kutzer, E. (1998). Improved disease resistance after Babesia divergens vaccination. Parasitology Research 84, 181–187.CrossRefGoogle ScholarPubMed
Friedhoff, K. T. (1988). Transmission of Babesia. In Babesiosis of Domestic Animals and Man, ed. Ristic, M., pp. 23–52. Boca Raton, FL: CRC Press.Google Scholar
Gale, K. R., Waltisbuhl, D. J., Bowden, J. M., et al. (1998). Amelioration of virulent Babesia bovis infection in calves by administration of the nitric oxide synthase inhibitor aminoguanidine. Parasite Immunology 20, 441–445.CrossRefGoogle ScholarPubMed
Goff, W. L., Johnson, W. C., Parish, S. M., et al. (2002). IL-4 and IL-10 inhibition of IFN-gamma- and TNF-alpha-dependent nitric oxide production from bovine mononuclear phagocytes exposed to Babesia bovis merozoites. Veterinary Immunology and Immunopathology 84, 237–251.CrossRefGoogle ScholarPubMed
Goff, W. L., Johnson, W. C., Parish, S. M., et al. (2001). The age-related immunity in cattle to Babesia bovis infection involves the rapid induction of interleukin-12, interferon-gamma and inducible nitric oxide synthase mRNA expression in the spleen. Parasite Immunology 23, 463–471.CrossRefGoogle ScholarPubMed
Goff, W. L., Storset, A. K., Johnson, W. C. & Brown, W. C. (2006). Bovine splenic NK cells synthesize IFN-gamma in response to IL-12-containing supernatants from Babesia bovis-exposed monocyte cultures. Parasite Immunology 28, 221–228.CrossRefGoogle ScholarPubMed
Goff, W. L., Wagner, G. G. & Craig, T. M. (1984). Increased activity of bovine ADCC effector cells during acute Babesia bovis infection. Veterinary Parasitology 16, 5–15.CrossRefGoogle ScholarPubMed
Goff, W. L., Wagner, G. G., Craig, T. M. & Long, R. F. (1982). The bovine immune response to tick-derived Babesia bovis infection: serological studies of isolated immunoglobulins. Veterinary Parasitology 11, 109–120.CrossRefGoogle ScholarPubMed
Goodger, B. V., Wright, I. G. & Mahoney, D. F. (1981). Initial characterization of cryoprecipitates in cattle recovering from acute Babesia bovis (Argentina) infection. Australian Journal of Experimental Biology and Medical Science 59, 521–529.CrossRefGoogle ScholarPubMed
Goodger, B. V., Wright, I. G. & Waltisbuhl, D. J. (1985). Babesia bovis: the effect of acute inflammation and isoantibody production in the detection of babesial antigens. Experientia 41, 1577–1579.CrossRefGoogle ScholarPubMed
Gough, J. M., Jorgensen, W. K. & Kemp, D. H. (1998). Development of tick gut forms of Babesia bigemina in vitro. Journal of Eukaryotic Microbiology 45, 298–306.Google ScholarPubMed
Gray, J. S. & Gannon, P. (1992). Preliminary development of a live drug-controlled vaccine against bovine babesiosis using the Mongolian gerbil, Meriones unguiculatus. Veterinary Parasitology 42, 179–188.CrossRefGoogle ScholarPubMed
Gray, J. S., Langley, R. J., Brophy, P. O. & Gannon, P. (1989). Vaccination against bovine babesiosis with drug-controlled live parasites. Veterinary Record 125, 369–372. [Published erratum appears in Veterinary Record (1989) 125, 646.]CrossRefGoogle ScholarPubMed
Hines, S. A., Palmer, G. H., Jasmer, D. P., Goff, W. L. & McElwain, T. F. (1995). Immunization of cattle with recombinant Babesia bovis merozoite surface antigen-1. Infection and Immunity 63, 349–352.Google ScholarPubMed
Hope, M., Riding, G., Menzies, M., et al. (2005). Potential for recombinant Babesia bovis antigens to protect against a highly virulent isolate. Parasite Immunology 27, 439–445.CrossRefGoogle ScholarPubMed
Hoyte, H. M. (1961). Initial development of infectious Babesia bigemina. Australian Veterinary Journal 8, 462–466.Google Scholar
Hubalek, Z. (1996). Cryopreservation of Microorganisms at Ultra-Low Temperatures. Kvetna, Czech Republic: Academy of Sciences of the Czech Republic.Google Scholar
Hugoson, G., Vennström, R. & Henriksson, K. (1968). The occurrence of bovine leukosis following the introduction of babesiosis vaccination. Bibliotheca Haematologica 30, 157–161.Google ScholarPubMed
Jacobson, R. H., Parrodi, F., Wright, I. G., Fitzgerald, C. J. & Dobson, C. (1993). Babesia bovis: in vitro phagocytosis promoted by immune serum and by antibodies produced against protective antigens. Parasitology Research 79, 221–226.CrossRefGoogle ScholarPubMed
Jenkins, M. C. (2001). Advances and prospects for subunit vaccines against protozoa of veterinary importance. Veterinary Parasitology 101, 291–310.CrossRefGoogle ScholarPubMed
Johnson, W. C., Cluff, C. W., Goff, W. L. & Wyatt, C. R. (1996). Reactive oxygen and nitrogen intermediates and products from polyamine degradation are babesiacidal in vitro. Annals of the New York Academy of Sciences 791, 136–147.CrossRefGoogle ScholarPubMed
Johnston, L. A., Leatch, G. & Jones, P. N. (1978). The duration of latent infection and functional immunity in Droughtmaster and Hereford cattle following natural infection with Babesia argentina and Babesia bigemina. Australian Veterinary Journal 54, 14–18.CrossRefGoogle ScholarPubMed
Jorgensen, W. K. & Waldron, S. J. (1994). Use of in vitro culture to isolate Babesia bovis from Theileria buffeli, Eperythrozoon wenyoni and Anaplasma spp. Veterinary Parasitology 53, 45–51.CrossRefGoogle ScholarPubMed
Jorgensen, W. K., Bock, R. E., Kingston, T. G., Vos, A. J. & Waldron, S. J. (1993). Assessment of tetracycline and Babesia culture supernatant as prophylactics for moderating reactions in cattle to live Babesia and Anaplasma vaccines. Australian Veterinary Journal 70, 35–36.CrossRefGoogle ScholarPubMed
Jorgensen, W. K., Vos, A. J. & Dalgliesh, R. J. (1989 a). Comparison of immunogenicity and virulence between Babesia bigemina parasites from continuous culture and from a splenectomized calf. Australian Veterinary Journal 66, 371–372.CrossRefGoogle Scholar
Jorgensen, W. K., Vos, A. J. & Dalgliesh, R. J. (1989 b). Infectivity of cryopreserved Babesia bovis, Babesia bigemina and Anaplasma centrale for cattle after thawing, dilution and incubation at 30 degrees C. Veterinary Parasitology 31, 243–251.CrossRefGoogle ScholarPubMed
Jorgensen, W. K., Waldron, S. J., McGrath, J., et al. (1992). Growth of Babesia bigemina parasites in suspension cultures for vaccine production. Parasitology Research 78, 423–426.CrossRefGoogle ScholarPubMed
Lawrence, J. A., Malika, J., Whiteland, A. P. & Kafuwa, P. (1993). Efficacy of an Australian Babesia bovis vaccine strain in Malawi. Veterinary Record 132, 295–296.CrossRefGoogle ScholarPubMed
Legg, J. (1935). The Occurrence of Bovine Babesiellosis in Northern Australia, CSIRO. Pamphlet No. 56. Melbourne, Australia: CSIRO.Google Scholar
Leroith, T., Brayton, K. A., Molloy, J. B., et al. (2005). Sequence variation and immunologic cross-reactivity among Babesia bovis merozoite surface antigen 1 proteins from vaccine strains and vaccine breakthrough isolates. Infection and Immunity 73, 5388–5394.CrossRefGoogle ScholarPubMed
Levine, N. D. (1971). Taxonomy of the piroplasms. Transactions of the American Microscopical Society 90, 2–33.CrossRefGoogle Scholar
Levine, N. D. (1985). Veterinary Protozoology. Ames, IA: Iowa State University Press.Google Scholar
Lew, A. & Jorgensen, W. (2005). Molecular approaches to detect and study the organisms causing bovine tick borne diseases: babesiosis and anaplasmosis. African Journal of Biotechnology 4, 292–302.Google Scholar
Lew, A. E., Bock, R. E., Croft, J. M., et al. (1997 a). Genotypic diversity in field isolates of Babesia bovis from cattle with babesiosis after vaccination. Australian Veterinary Journal 75, 575–578.CrossRefGoogle ScholarPubMed
Lew, A. E., Dalrymple, B. P., Jeston, P. J. & Bock, R. E. (1997b). PCR methods for the discrimination of Babesia bovis isolates. Veterinary Parasitology 71, 223–237.CrossRefGoogle Scholar
Lignières, J. (1903). Bovine babesiosis: new investigations and observations on the multiplicity, the evolution and natural transmission of the parasites involved in the disease and on vaccination. Archives de Parasitologie 7, 398–407.Google Scholar
Lohr, K. F. (1973). Susceptibility of non-splenectomized and splenectomized Sahiwal cattle to experimental Babesia bigemina infection. Zentralblatt für Veterinarmedizin B 20, 52–56.CrossRefGoogle ScholarPubMed
Mackenstedt, U., Gauer, M., Fuchs, P., et al. (1995). DNA measurements reveal differences in the life cycles of Babesia bigemina and B. canis, two typical members of the genus Babesia. Parasitology Research 81, 595–604.CrossRefGoogle Scholar
Mackenstedt, U., Gauer, M., Mehlhorn, H., Schein, E. & Hauschild, S. (1990). Sexual cycle of Babesia divergens confirmed by DNA measurements. Parasitology Research 76, 199–206.CrossRefGoogle ScholarPubMed
Mahoney, D. F. (1967 a). Bovine babesiosis: the immunization of cattle with killed Babesia argentina. Experimental Parasitology 20, 125–129.CrossRefGoogle ScholarPubMed
Mahoney, D. F. (1967 b). Bovine babesiosis: the passive immunization of calves against Babesia argentina with special reference to the role of complement fixing antibodies. Experimental Parasitology 20, 119–124.CrossRefGoogle ScholarPubMed
Mahoney, D. F. (1969). Bovine babesiasis: a study of factors concerned in transmission. Annals of Tropical Medicine and Parasitology 63, 1–14.CrossRefGoogle ScholarPubMed
Mahoney, D. F. (1972). Immune responses to hemoprotozoa. II. Babesia spp. In Immunity to Animal Parasites, ed. Soulsby, E. J. L., pp. 301–341. New York: Academic Press.Google Scholar
Mahoney, D. F. (1974). The application of epizootiological principals in the control of babesiosis in cattle. Bulletin of Office International des Epizooties 81, 123–138.Google Scholar
Mahoney, D. F. (1986). Studies on the protection of cattle against Babesia bovis infection. In The Ruminant Immune System in Health and Disease, ed. Morrison, W. I., pp. 539–544. Cambridge, UK: Cambridge University Press.Google Scholar
Mahoney, D. F. & Goodger, B. V. (1969). Babesia argentina: serum changes in infected calves. Experimental Parasitology 24, 375–382.CrossRefGoogle ScholarPubMed
Mahoney, D. F. & Mirre, G. B. (1971). Bovine babesiasis: estimation of infection rates in the tick vector Boophilus microplus (Canestrini). Annals of Tropical Medicine and Parasitology 65, 309–317.CrossRefGoogle Scholar
Mahoney, D. F. & Mirre, G. B. (1979). A note on the transmission of Babesia bovis (syn. B. argentina) by the one-host tick, Boophilus microplus. Research in Veterinary Science 26, 253–4.Google ScholarPubMed
Mahoney, D. F. & Ross, D. R. (1972). Epizootiological factors in the control of bovine babesiosis. Australian Veterinary Journal 48, 292–298.CrossRefGoogle ScholarPubMed
Mahoney, D. F., Kerr, J. D., Goodger, B. V. & Wright, I. G. (1979 a). The immune response of cattle to Babesia bovis (syn. B. argentina): studies on the nature and specificity of protection. International Journal for Parasitology 9, 297–306.CrossRefGoogle ScholarPubMed
Mahoney, D. F., Wright, I. G. & Goodger, B. V. (1979 b). Immunity in cattle to Babesia bovis after single infections with parasites of various origin. Australian Veterinary Journal 55, 10–12.CrossRefGoogle ScholarPubMed
Mahoney, D. F., Wright, I. G., Goodger, B. V., et al. (1981). The transmission of Babesia bovis in herds of European and Zebu × European cattle infested with the tick, Boophilus microplus. Australian Veterinary Journal 57, 461–469.CrossRefGoogle ScholarPubMed
Mahoney, D. F., Wright, I. G. & Mirre, G. B. (1973). Bovine babesiasis: the persistence of immunity to Babesia argentina and B. bigemina in calves (Bos taurus) after naturally acquired infection. Annals of Tropical Medicine and Parasitology 67, 197–203.CrossRefGoogle Scholar
Mangold, A. J., Vanzini, V. R., Echaide, I. E., et al. (1996). Viability after thawing and dilution of simultaneously cryopreserved vaccinal Babesia bovis and Babesia bigemina strains cultured in vitro. Veterinary Parasitology 61, 345–348.CrossRefGoogle ScholarPubMed
Mason, T. E., Potgieter, F. T. & Rensburg, L. (1986). The inability of a South African Babesia bovis vaccine strain to infect Boophilus microplus. Onderstepoort Journal of Veterinary Research 53, 143–145.Google ScholarPubMed
McCosker, P. J. (1981). The global importance of babesiosis. In Babesiosis, eds. Ristic, M. & Kreier, J. P., pp. 1–24. New York: Academic Press.Google Scholar
McElwain, T. F., Perryman, L. E., Musoke, A. J. & McGuire, T. C. (1991). Molecular characterization and immunogenicity of neutralization-sensitive Babesia bigemina merozoite surface proteins. Molecular and Biochemical Parasitology 47, 213–222.CrossRefGoogle ScholarPubMed
McGuire, T. C., Musoke, A. J. & Kurtti, T. (1979). Functional properties of bovine IgG1 and IgG2: interaction with complement, macrophages, neutrophils and skin. Immunology 38, 249–256.Google ScholarPubMed
McLeod, R. & Kristjanson, P. (1999). Final Report of Joint Esys/ILRI/ACIAR TickCost Project: Economic Impact of Ticks and Tick-Borne Diseases to Livestock in Africa, Asia and Australia. Nairobi, Kenya: International Livestock Research Institute.
Mehlhorn, H. & Shein, E. (1984). The piroplasms: life cycle and sexual stages. Advances in Parasitology 23, 37–103.CrossRefGoogle ScholarPubMed
Mellors, L. T., Dalgliesh, R. J., Timms, P., Rodwell, B. J. & Callow, L. L. (1982). Preparation and laboratory testing of a frozen vaccine containing Babesia bovis, Babesia bigemina and Anaplasma centrale. Research in Veterinary Science 32, 194–197.Google ScholarPubMed
Molloy, J. B., Bowles, P. M., Bock, R. E., et al. (1998 a). Evaluation of an ELISA for detection of antibodies to Babesia bovis in cattle in Australia and Zimbabwe. Preventive Veterinary Medicine 33, 59–67.CrossRefGoogle ScholarPubMed
Molloy, J. B., Bowles, P. M., Jeston, P. J., et al. (1998 b). Development of an enzyme-linked immunosorbent assay for detection of antibodies to Babesia bigemina in cattle. Parasitology Research 84, 651–656.CrossRefGoogle ScholarPubMed
Montenegro-James, S. (1989). Immunoprophylactic control of bovine babesiosis: role of exoantigens of Babesia. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, S85–S94.CrossRefGoogle ScholarPubMed
Montenegro-James, S., Toro, M., Leon, E. & Guillen, A. T. (1992). Field evaluation of an exoantigen-containing Babesia vaccine in Venezuela. Memorias do Instituto Oswaldo Cruz 87, S283–S288.CrossRefGoogle ScholarPubMed
Ndi, C., Bayemi, P. H., Ekue, F. N. & Tarounga, B. (1991). Preliminary observations on ticks and tick-borne diseases in the north west province of Cameroon. I. Babesiosis and anaplasmosis. Revue d'Elevage et de Médecine Vétérinaire des Pays Tropicaux 44, 263–265.Google Scholar
Norimine, J., Suarez, C. E., McElwain, T. F., Florin-Christensen, M. & Brown, W. C. (2002). Immunodominant epitopes in Babesia bovis rhoptry-associated protein 1 that elicit memory CD4(+)-T–lymphocyte responses in B. bovis-immune individuals are located in the amino-terminal domain. Infection and Immunity 70, 2039–2048.CrossRefGoogle Scholar
Norval, R. A. I., Perry, B. D. & Hargreaves, S. K. (1992 a). Tick and tick-borne disease control in Zimbabwe: what might the future hold?Zimbabwe Veterinary Journal 23, 1–15.Google Scholar
Norval, R. A. I., Perry, B. D. & Young, A. S. (1992 b). The Epidemiology of Theileriosis in Africa. London: Academic Press.Google Scholar
Parker, R. J., Shepherd, R. K., Trueman, K. F., et al. (1985). Susceptibility of Bos indicus and Bos taurus to Anaplasma marginale and Babesia bigemina infections. Veterinary Parasitology 17, 205–213.CrossRefGoogle ScholarPubMed
Pegram, R. G., Wilson, D. D. & Hansen, J. W. (2000). Past and present national tick control programs: why they succeed or fail. Annals of the New York Academy of Sciences 916, 546–554.CrossRefGoogle ScholarPubMed
Perry, B. D., Chamboko, T., Mahan, S. M., et al. (1998). The economics of integrated tick and tick-borne disease control on commercial farms in Zimbabwe. Zimbabwe Veterinary Journal 29, 21–29.Google Scholar
Pipano, E. (1995). Live vaccines against hemoparasitic diseases in livestock. Veterinary Parasitology 57, 213–231.CrossRefGoogle ScholarPubMed
Pipano, E. (1997). Vaccines against hemoparasitic diseases in Israel with special reference to quality assurance. Tropical Animal Health and Production 29 (Suppl.), S86–S90.CrossRefGoogle ScholarPubMed
Pipano, E., Markovics, A., Kriegel, Y., Frank, M. & Fish, L. (1987). Use of long-acting oxytetracycline in the immunization of cattle against Babesia bovis and B. bigemina. Research in Veterinary Science 43, 64–66.Google ScholarPubMed
Potgieter, F. T. (1977). The life cycle of Babesia bovis and Babesia bigemina in ticks and in cattle in South Africa. Unpublished Ph.D. thesis, Rand Afrikaans University, Johannesburg, South Africa.
Potgieter, F. T. & Els, H. J. (1976). Light and electron microscopic observations on the development of small merozoites of Babesia bovis in Boophilus microplus larvae. Onderstepoort Journal of Veterinary Research 43, 123–128.Google ScholarPubMed
Potgieter, F. T. & Els, H. J. (1977 a). The fine structure of intra-erythrocytic stages of Babesia bigemina. Onderstepoort Journal of Veterinary Research 44, 157–168.Google ScholarPubMed
Potgieter, F. T. & Els, H. J. (1977 b). Light and electron microscopic observations on the development of Babesia bigemina in larvae, nymphae and non-replete females of Boophilus decoloratus. Onderstepoort Journal of Veterinary Research 44, 213–231.Google ScholarPubMed
Potgieter, F. T. & Els, H. J. (1979). An electron microscopic study of intra-erythrocytic stages of Babesia bovis in the brain capillaries of infected splenectomized calves. Onderstepoort Journal of Veterinary Research 46, 41–49.Google ScholarPubMed
Precigout, E., Gorenflot, A., Valentin, A., et al. (1991). Analysis of immune responses of different hosts to Babesia divergens isolates from different geographic areas and capacity of culture-derived exoantigens to induce efficient cross-protection. Infection and Immunity 59, 2799–2805. [Published erratum appears in Infection and Immunity (1992) 60, 1728.]Google ScholarPubMed
Pudney, M. (1992). Cultivation of Babesia. In Recent Developments in the Control of Anaplasmosis, Babesiosis and Cowdriosis, ed. Dolan, T. T., pp. 129–140. Nairobi, Kenya: International Laboratory for Research on Animal Diseases.Google Scholar
Purnell, R. E. & Lewis, D. (1981). Babesia divergens: combination of dead and live parasites in an irradiated vaccine. Research in Veterinary Science 30, 18–21.Google Scholar
Riek, R. F. (1963). Immunity to babesiosis. In Immunity to Protozoa, eds. Garnham, P. C. C., Pierce, A. E. & Roitt, I., pp. 160–179. Oxford, UK: Blackwell Scientific Publications.Google Scholar
Riek, R. F. (1964). The life cycle of Babesia bigemina (Smith and Kilborne, 1893) in the tick vector Boophilus microplus (Canestrini). Australian Journal of Agricultural Research 15, 802–821.CrossRefGoogle Scholar
Riek, R. F. (1966). The life cycle of Babesia argentina (Lignières, 1903) (Sporozoa: Piroplasmidea) in the vector Boophilus microplus (Canestrini). Australian Journal of Agricultural Research 17, 247–254.CrossRefGoogle Scholar
Rodriguez, S. D., Palmer, G. H., McElwain, T. F., et al. (1996). CD4+ T-helper lymphocyte responses against Babesia bigemina rhoptry-associated protein I. Infection and Immunity 64, 2079–2087.Google ScholarPubMed
Rogers, R. J., Dimmock, C. K., Vos, A. J. & Rodwell, B. J. (1988). Bovine leucosis virus contamination of a vaccine produced in vivo against bovine babesiosis and anaplasmosis. Australian Veterinary Journal 65, 285–287.CrossRefGoogle ScholarPubMed
Rudzinska, M. A., Spielman, A., Lewengrub, S., Trager, W. & Piesman, J. (1983). Sexuality in piroplasms as revealed by electron microscopy in Babesia microti. Proceedings of the National Academy of Sciences of the USA 80, 2966–2970.CrossRefGoogle ScholarPubMed
Sahibi, H., Rhalem, A., Berrag, B. & Goff, W. L. (1998). Bovine babesiosis: seroprevalence and ticks associated with cattle from two different regions of Morocco. Annals of the New York Academy of Sciences 849, 213–218.CrossRefGoogle ScholarPubMed
Sayin, F., Dincer, S., Karaer, Z., et al. (1996). Studies on seroprevalence of babesia infection of cattle in Turkey. In New Dimensions in Parasitology, Proceedings of the 8th International Congress of Parasitology, ed. Özcel, M. A., pp. 505–516. Izmir, Turkey: Turkish Society for Parasitology.Google Scholar
Schetters, T. P. M., Kleuskens, J. A. G. M., Scholtes, N. C., et al. (2006). Onset and duration of immunity against Babesia canis infection in dogs vaccinated with antigens from culture supernatants. Veterinary Parasitology 138, 140–146.CrossRefGoogle ScholarPubMed
Shkap, V., Pipano, E., McElwain, T. F., et al. (1994). Cross-protective immunity induced by Babesia bovis clones with antigenically unrelated variable merozoite surface antigens. Veterinary Immunology and Immunopathology 41, 367–374.CrossRefGoogle ScholarPubMed
Shoda, L. K., Kegerreis, K. A., Suarez, C. E., et al. (2001). DNA from protozoan parasites Babesia bovis, Trypanosoma cruzi, and T. brucei is mitogenic for B lymphocytes and stimulates macrophage expression of interleukin-12, tumor necrosis factor alpha, and nitric oxide. Infection and Immunity 69, 2162–2171.CrossRefGoogle Scholar
Shoda, L. K., Palmer, G. H., Florin-Christensen, J., et al. (2000). Babesia bovis-stimulated macrophages express interleukin-1beta, interleukin-12, tumor necrosis factor alpha, and nitric oxide and inhibit parasite replication in vitro. Infection and Immunity 68, 5139–5145.CrossRefGoogle ScholarPubMed
Singleton, E. F. (1974). The effect of heat on reproductive function in the bull. Unpublished Ph. D. thesis, University of Queensland, Brisbane, Australia.
Smith, R. D., Molinar, E., Larios, F., et al. (1980). Bovine babesiosis: pathogenicity and heterologous species immunity of tick-borne Babesia bovis and B. bigemina infections. American Journal of Veterinary Research 41, 1957–1965.Google ScholarPubMed
Smith, T. & Kilborne, F. L. (1893). Investigations into the nature, causation and prevention of Southern cattle fever. In 9th Annual Report of the Bureau of Animal Industry for the year 1892, pp. 177–304. Washington, DC: US Government Printing Office.Google Scholar
Sserugga, J. N., Jonsson, N. N., Bock, R. E. & More, S. J. (2003). Serological evidence of exposure to tick fever organisms in young cattle in Queensland dairy farms. Australian Veterinary Journal 81, 147–152.CrossRefGoogle ScholarPubMed
Standfast, N. F. & Jorgensen, W. K. (1997). Comparison of the infectivity of Babesia bovis, Babesia bigemina and Anaplasma centrale for cattle after cryopreservation in either dimethylsulphoxide (DMSO) or polyvinylpyrrolidone (PVP). Australian Veterinary Journal 75, 62–63.CrossRefGoogle Scholar
Standfast, N. F., Bock, R. E., Wiecek, M. M., et al. (2003). Overcoming constraints to meeting increased demand for Babesia bigemina vaccine in Australia. Veterinary Parasitology 115, 213–222.CrossRefGoogle ScholarPubMed
Stewart, N. P., Vos, A. J., McHardy, N. & Standfast, N. F. (1990). Elimination of Theileria buffeli infections from cattle by concurrent treatment with buparvaquone and primaquine phosphate. Tropical Animal Health and Production 22, 116–122.CrossRefGoogle ScholarPubMed
Stich, R. W., Shoda, L. K., Dreewes, M., et al. (1998). Stimulation of nitric oxide production in macrophages by Babesia bovis. Infection and Immunity 66, 4130–4136.Google ScholarPubMed
Sutherst, R. W. (1987). The dynamics of hybrid zones between tick (Acari) species. International Journal for Parasitology 17, 921–926.CrossRefGoogle ScholarPubMed
Taylor, R. J. & McHardy, N. (1979). Preliminary observations on the combined use of imidocarb and Babesia blood vaccine in cattle. Journal of the South African Veterinary Association 50, 326–329.Google ScholarPubMed
Timms, P. & Stewart, N. P. (1989). Growth of Babesia bovis parasites in stationary and suspension cultures and their use in experimental vaccination of cattle. Research in Veterinary Science 47, 309–314.Google ScholarPubMed
Timms, P., Dalgliesh, R. J., Barry, D. N., Dimmock, C. K. & Rodwell, B. J. (1983 a). Babesia bovis: comparison of culture-derived parasites, non-living antigen and conventional vaccine in the protection of cattle against heterologous challenge. Australian Veterinary Journal 60, 75–77.CrossRefGoogle ScholarPubMed
Timms, P., Stewart, N. P. & Dalgliesh, R. J. (1983 b). Comparison of tick and blood challenge for assessing immunity to Babesia bovis. Australian Veterinary Journal 60, 257–259.CrossRefGoogle ScholarPubMed
Timms, P., Stewart, N. P. & Vos, A. J. (1990). Study of virulence and vector transmission of Babesia bovis by use of cloned parasite lines. Infection and Immunity 58, 2171–2176.Google ScholarPubMed
Tjornehoj, K. T., Lawrence, J. A., Whiteland, A. P. & Kafuwa, P. T. (1996). Field observations on the duration of immunity in cattle after vaccination against Anaplasma and Babesia species. Onderstepoort Journal of Veterinary Research 63, 1–5.Google ScholarPubMed
Trueman, K. F. & Blight, G. W. (1978). The effect of age on resistance of cattle to Babesia bovis. Australian Veterinary Journal 54, 301–305.CrossRefGoogle ScholarPubMed
Uilenberg, G. (2006). Babesia: a historical overview. Veterinary Parasitology 138, 3–10.CrossRefGoogle ScholarPubMed
Uilenberg, G., Thiaucourt, F. & Jongejan, F. (2004). On molecular taxonomy: what is in a name?Experimental and Applied Acarology 32, 301–312.CrossRefGoogle Scholar
Valentin, A., Précigout, E., Hostis, L' M., et al. (1993). Cellular and humoral immune responses induced in cattle by vaccination with Babesia divergens culture-derived exoantigens correlate with protection. Infection and Immunity 61, 734–741.Google ScholarPubMed
Vega, C. A., Buening, G. M., Rodriguez, S. D., Carson, C. A. & McLaughlin, K. (1985). Cryopreservation of Babesia bigemina for in vitro cultivation. American Journal of Veterinary Research 46, 421–423.Google ScholarPubMed
Vial, H. J. & Gorenflot, A. (2006). Chemotherapy against babesiosis. Veterinary Parasitology 138, 147–160.CrossRefGoogle ScholarPubMed
Waldron, S. J. & Jorgensen, W. K. (1999). Transmission of Babesia spp. by the cattle tick (Boophilus microplus) to cattle treated with injectable or pour-on formulations of ivermectin and moxidectin. Australian Veterinary Journal 77, 657–659.CrossRefGoogle ScholarPubMed
Wilkowsky, S. E., Farber, M., Echaide, I., et al. (2003). Babesia bovis merozoite surface protein-2c (MSA-2c) contains highly immunogenic, conserved B-cell epitopes that elicit neutralization-sensitive antibodies in cattle. Molecular and Biochemical Parasitology 127, 133–141.CrossRefGoogle ScholarPubMed
Wright, I. G. & Goodger, B. V. (1988). Pathogenesis of babesiosis. In Babesiosis of Domestic Animals and Man, ed. Ristic, M., pp. 99–118. Boca Raton, FL: CRC Press.Google Scholar
Wright, I. G. & Riddles, P. W. (1989). Biotechnology in tick-borne diseases: present status, future perspectives. In FAO Expert Consultation of Biotechnology for Livestock Production and Health, pp. 325–340. Rome: Food and Agriculture Organization of the United Nations.Google Scholar
Wright, I. G., Casu, R., Commins, M. A., et al. (1992). The development of a recombinant Babesia vaccine. Veterinary Parasitology 44, 3–13.CrossRefGoogle ScholarPubMed
Wright, I. G., Goodger, B. V., Buffington, G. D., et al. (1989). Immunopathophysiology of babesial infections. Transactions of the Royal Society of Tropical Medicine and Hygiene 83 (Suppl.), S11–S13.CrossRefGoogle ScholarPubMed
Wright, I. G., Goodger, B. V., Leatch, G., et al. (1987). Protection of Babesia bigemina-immune animals against subsequent challenge with virulent Babesia bovis. Infection and Immunity 55, 364–368.Google ScholarPubMed
Wright, I. G., Mahoney, D. F., Mirre, G. B., Goodger, B. V. & Kerr, J. D. (1982). The irradiation of babesia bovis. II. The immunogenicity of irradiated blood parasites for intact cattle and splenectomized calves. Veterinary Immunology and Immunopathology 3, 591–601.CrossRefGoogle Scholar
Wyatt, C. R., Goff, W. & Davis, W. C. (1991). A flow cytometric method for assessing viability of intraerythrocytic hemoparasites. Journal of Immunological Methods 140, 23–30.CrossRefGoogle ScholarPubMed
Yokoyama, N., Okamura, M. & Igarashi, I. (2006). Erythrocyte invasion by Babesia parasites: current advances in the elucidation of the molecular interactions between the protozoan ligands and host receptors in the invasion stage. Veterinary Parasitology 138, 22–32.CrossRefGoogle ScholarPubMed
Yunker, C. E., Kuttler, K. L. & Johnson, L. W. (1987). Attenuation of Babesia bovis by in vitro cultivation. Veterinary Parasitology 24, 7–13.CrossRefGoogle ScholarPubMed
Zintl, A., Mulcahy, G., Skerrett, H. E., Taylor, S. M. & Gray, J. S. (2003). Babesia divergens: a bovine blood parasite of veterinary and zoonotic importance. Clinical Microbiology Reviews 16, 622–636.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Babesiosis of cattle
    • By R. E. Bock, Tick Fever Centre Biosecurity Queensland Queensland Department of Primary Industries Fisheries 280 Grindle Road Wacol Qld 4076 Australia, L. A. Jackson, Animal Research Institute Biosecurity Queensland Department of Primary Industries Fisheries Locked Mail Bag No. 4 Moorooka Qld 4105 Australia, A. J. De Vos, Tick Fever Centre Biosecurity Queensland Queensland Department of Primary Industries Fisheries 280 Grindle Road Wacol Qld 4076 Australia, W. K. Jorgensen, Animal Research Institute Department of Primary Industries Fisheries Locked Mail Bag No. 4 Moorooka Qld 4105 Australia
  • Edited by Alan S. Bowman, University of Aberdeen, Patricia A. Nuttall
  • Book: Ticks
  • Online publication: 21 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511551802.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Babesiosis of cattle
    • By R. E. Bock, Tick Fever Centre Biosecurity Queensland Queensland Department of Primary Industries Fisheries 280 Grindle Road Wacol Qld 4076 Australia, L. A. Jackson, Animal Research Institute Biosecurity Queensland Department of Primary Industries Fisheries Locked Mail Bag No. 4 Moorooka Qld 4105 Australia, A. J. De Vos, Tick Fever Centre Biosecurity Queensland Queensland Department of Primary Industries Fisheries 280 Grindle Road Wacol Qld 4076 Australia, W. K. Jorgensen, Animal Research Institute Department of Primary Industries Fisheries Locked Mail Bag No. 4 Moorooka Qld 4105 Australia
  • Edited by Alan S. Bowman, University of Aberdeen, Patricia A. Nuttall
  • Book: Ticks
  • Online publication: 21 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511551802.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Babesiosis of cattle
    • By R. E. Bock, Tick Fever Centre Biosecurity Queensland Queensland Department of Primary Industries Fisheries 280 Grindle Road Wacol Qld 4076 Australia, L. A. Jackson, Animal Research Institute Biosecurity Queensland Department of Primary Industries Fisheries Locked Mail Bag No. 4 Moorooka Qld 4105 Australia, A. J. De Vos, Tick Fever Centre Biosecurity Queensland Queensland Department of Primary Industries Fisheries 280 Grindle Road Wacol Qld 4076 Australia, W. K. Jorgensen, Animal Research Institute Department of Primary Industries Fisheries Locked Mail Bag No. 4 Moorooka Qld 4105 Australia
  • Edited by Alan S. Bowman, University of Aberdeen, Patricia A. Nuttall
  • Book: Ticks
  • Online publication: 21 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511551802.014
Available formats
×