Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T11:19:22.073Z Has data issue: false hasContentIssue false

35 - Frontotemporal dementia with parkinsonism linked to Chromosome 17

from Part VI - Other Dementias

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Mark S. Forman
Affiliation:
Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine University of Pennsylvania, PA, USA
Virginia M.-Y. Lee
Affiliation:
Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine University of Pennsylvania, PA, USA
John Q. Trojanowski
Affiliation:
Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine University of Pennsylvania, PA, USA
Get access

Summary

Introduction

A variety of sporadic and familial neurodegenerative disorders, characterized clinically by dementia and/or motor dysfunction, demonstrate intracellular accumulations of filamentous material composed of the microtubule-associated protein (MAP) tau (See chapters 29, ‘Neuropathology of Alzheimer's disease’, 34, ‘Pick's and other frontotemporal dementias’, 44, ‘Progressive supranuclear palsy’, and 45, ‘Corticobasal degeneration’). The term ‘tauopathies’ was coined to refer to this seemingly heterogeneous group of neurodegenerative disorders with filamentous tau deposits as their predominant histopathological feature. The progressive accumulation of filamentous tau inclusions in the absence of other disease-specific neuropathological abnormalities provided circumstantial evidence implicating tau dysfunction in disease onset and/or progression. However, the discovery of pathogenic tau mutations in a heterogeneous group of disorders termed frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) provided unequivocal confirmation of the central role of tau abnormalities in the etiology of neurodegenerative disorders (Foster et al., 1997; Poorkaj et al., 1998; Hutton et al., 1998; Spillantini et al., 1998c). This seminal finding has opened novel areas of investigation into the pathophysiologic mechanisms of tau dysfunction and the relationship of tau abnormalities to brain degeneration.

Familial frontotemporal dementia

In 1892, Arnold Pick described a woman with lobar brain atrophy, who presented clinically with presenile dementia and aphasia (Pick, 1892). Thus, this was the first description of what is now classified clinically as frontotemporal dementia (FTD) (McKhann et al., 2001).

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 494 - 511
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreadis, A., Brown, W. M. & Kosik, K. S. (1992). Structure and novel exons of the human tau gene. Biochemistry, 31, 10626–33CrossRefGoogle ScholarPubMed
Arawaka, S., Usami, M., Sahara, N., Schellenberg, G. D., Lee, G. & Mori, H. (1999). The tau mutation (val337met) disrupts cytoskeletal networks of microtubules. Neuroreport, 10, 993–7CrossRefGoogle ScholarPubMed
Arima, K., Kowalska, A., Hasegawa, M.et al. (2000). Two brothers with frontotemporal dementia and parkinsonism with an N279K mutation of the tau gene. Neurology, 54, 1787–95CrossRefGoogle ScholarPubMed
Arrasate, M., Perez, M., Armas-Portela, R. & Avila, J. (1999). Polymerization of tau peptides into fibrillar structures. The effect of FTDP-17 mutations. FEBS Lett., 446, 199–202CrossRefGoogle ScholarPubMed
Ashworth, A., Lloyd, S., Brown, J.et al. (1999). Molecular genetic characterization of frontotemporal dementia on chromosome 3. Dement. Geriatr. Cogn. Disord., 10 (Suppl 1), 93–101CrossRefGoogle Scholar
Baker, M., Kwok, J. B., Kucera, S.et al. (1997). Localization of frontotemporal dementia with parkinsonism in an Australian kindred to chromosome 17q21–22. Ann. Neurol., 42, 794–8CrossRefGoogle Scholar
Barghorn, S., Zheng-Fischhofer, Q., Ackmann, M.et al. (2000). Structure, microtubule interactions, and paired helical filament aggregation by tau mutants of frontotemporal dementias. Biochemistry, 39, 11714–21CrossRefGoogle ScholarPubMed
Biernat, J., Gustke, N., Drewes, G., Mandelkow, E. M. & Mandelkow, E. (1993). Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron, 11, 153–63CrossRefGoogle ScholarPubMed
Billingsley, M. L. & Kincaid, R. L. (1997). Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem. J, 323, 577–91CrossRefGoogle ScholarPubMed
Binder, L. I., Frankfurter, A. & Rebhun, L. I. (1985). The distribution of tau in the mammalian central nervous system. J. Cell. Biol., 101, 1371–8CrossRefGoogle ScholarPubMed
Bird, T. D., Wijsman, E. M., Nochlin, D.et al. (1997). Chromosome 17 and hereditary dementia: linkage studies in three non-Alzheimer families and kindreds with late-onset FAD. Neurology, 48, 949–54CrossRefGoogle ScholarPubMed
Bird, T. D., Nochlin, D., Poorkaj, P.et al. (1999). A clinical pathological comparison of three families with frontotemporal dementia and identical mutations in the tau gene (P301L). Brain, 122, 741–756CrossRefGoogle Scholar
Bramblett, G. T., Goedert, M., Jakes, R., Merrick, S. E., Trojanowski, J. Q. & Lee, V. M.-Y. (1993). Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron, 10, 1089–99CrossRefGoogle ScholarPubMed
Brown, J. (1998). Chromosome 3-linked frontotemporal dementia. Cell Mol. Life Sci., 54, 925–7CrossRefGoogle ScholarPubMed
Buée, L., Bussière, T., Buée-Scherrer, V., Delacourte, A. & Hof, P. R. (2000). Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res. Rev., 33, 1–36CrossRefGoogle ScholarPubMed
Bugiani, O., Murrell, J. R., Giaccone, G.et al. (1999). Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J. Neuropathol. Exp. Neurol., 58, 667–77CrossRefGoogle Scholar
Butner, K. A. & Kirschner, M. W. (1991). Tau protein binds to microtubules through a flexible array of distributed weak sites. J. Cell Biol., 115, 717–30CrossRefGoogle ScholarPubMed
Chow, T. W., Miller, B. L., Hayashi, V. N. & Geschwind, D. H. (1999). Inheritance of frontotemporal dementia. Arch. Neurol., 56, 817–22CrossRefGoogle ScholarPubMed
Clark, L. N., Poorkaj, P., Wszolek, Z.et al. (1998). Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc. Natl Acad. Sci., USA, 95, 13103–7CrossRefGoogle ScholarPubMed
Cleveland, D. W., Hwo, S. Y. & Kirschner, M. W. (1977). Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J. Mol. Biol., 116, 207–25CrossRefGoogle ScholarPubMed
Connell, J. W., Gibb, G. M., Betts, J. C.et al. (2001). Effects of FTDP-17 mutations on the in vitro phosphorylation of tau by glycogen synthase kinase 3beta identified by mass spectrometry demonstrate certain mutations exert long-range conformational changes. FEBS Lett., 493, 40–4CrossRefGoogle ScholarPubMed
Couchie, D., Mavilia, C., Georgieff, I. S., Liem, R. K., Shelanski, M. L. & Nunez, J. (1992). Primary structure of high molecular weight tau present in the peripheral nervous system. Proc. Natl Acad. Sci., USA, 89, 4378–81CrossRefGoogle ScholarPubMed
D'Souza, I. & Schellenberg, D. (2000). Determinants of 4 repeat tau expression: Coordination between enhancing and inhibitory splicing sequences for exon 10 inclusion. J. Biol. Chem., 275, 17700–9CrossRefGoogle ScholarPubMed
D'Souza, I., Poorkaj, P., Hong, M.et al. (1999). Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements. Proc. Natl Acad. Sci., USA, 96, 5598–603CrossRefGoogle ScholarPubMed
Dayanandan, R., Slegtenhorst, M., Mack, T. G.et al. (1999). Mutations in tau reduce its microtubule binding properties in intact cells and affect its phosphorylation. FEBS Lett., 446, 228–32CrossRefGoogle ScholarPubMed
Delisle, M. B., Murrell, J. R., Richardson, R.et al. (1999). A mutation at codon 279 (N279K) in exon 10 of the Tau gene causes a tauopathy with dementia and supranuclear palsy. Acta Neuropathol.(Berl), 98, 62–77CrossRefGoogle ScholarPubMed
DeTure, M., Ko, L. W., Yen, S.et al. (2000). Missense tau mutations identified in FTDP-17 have a small effect on tau-microtubule interactions. Brain Res., 853, 5–14CrossRefGoogle ScholarPubMed
Drechsel, D. N., Hyman, A. A., Cobb, M. H. & Kirschner, M. W. (1992). Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol. Biol. Cel., 3, 1141–54CrossRefGoogle ScholarPubMed
Dumanchin, C., Camuzat, A., Campion, D.et al. (1998). Segregation of a missense mutation in the microtubule-associated protein tau gene with familial frontotemporal dementia and parkinsonism. Hum. Mol. Genet., 7, 1825–9CrossRefGoogle ScholarPubMed
Fabre, S. F., Forsell, C., Viitanen, M.et al. (2001). Clinic-based cases with frontotemporal dementia show increased cerebrospinal fluid tau and high apolipoprotein E epsilon4 frequency, but no tau gene mutations. Exp. Neurol., 168, 413–18CrossRefGoogle ScholarPubMed
Foster, N. L., Wilhelmsen, K., Sima, A. A., Jones, M. Z., D'Amato, C. J. & Gilman, S. (1997). Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Ann. Neurol., 41, 706–15CrossRefGoogle ScholarPubMed
Frappier, T., Liang, N. S., Brown, K.et al. (1999). Abnormal microtubule packing in processes of SF9 cells expressing the FTDP-17 V337M tau mutation. FEBS Lett., 455, 262–6CrossRefGoogle ScholarPubMed
Furukawa, K., D'Souza, I., Crudder, C. H.et al. (2000). Pro-apoptotic effects of tau mutations in chromosome 17 frontotemporal dementia and parkinsonism. Neuroreport, 11, 57–60CrossRefGoogle ScholarPubMed
Gamblin, T. C., King, M. E., Dawson, H.et al. (2000). In vitro polymerization of tau protein monitored by laser light scattering: method and application to the study of FTDP-17 mutants. Biochemistry, 39, 6136–44CrossRefGoogle Scholar
Gao, Q. S., Memmott, J., Lafyatis, R., Stamm, S., Screaton, G. & Andreadis, A. (2000). Complex regulation of tau exon 10, whose missplicing causes frontotemporal dementia. J. Neurochem., 74, 490–500CrossRefGoogle ScholarPubMed
Geschwind, D. H., Robidoux, J., Alarcon, M.et al. (2001). Dementia and neurodevelopmental predisposition: cognitive dysfunction in presymptomatic subjects precedes dementia by decades in frontotemporal dementia. Ann. Neurol., 50, 741–6CrossRefGoogle ScholarPubMed
Goedert, M. & Jakes, R. (1990). Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J, 9, 4225–30Google ScholarPubMed
Goedert, M., Wischik, C. M., Crowther, R. A., Walker, J. E., and Klug, A. (1988). Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc. Natl Acad. Sci., USA, 85, 4051–5CrossRefGoogle ScholarPubMed
Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D. & Crowther, R. A. (1989a). Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron, 3, 519–26CrossRefGoogle Scholar
Goedert, M., Spillantini, M. G., Potier, M. C., Ulrich, J. & Crowther, R. A. (1989b). Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J., 8, 393–9Google Scholar
Goedert, M., Jakes, R. & Crowther, R. A. (1999a). Effects of frontotemporal dementia FTDP-17 mutations on heparin-induced assembly of tau filaments. FEBS Lett., 450, 306–11CrossRefGoogle Scholar
Goedert, M., Spillantini, M. G., Crowther, R. A.et al. (1999b). Tau gene mutation in familial progressive subcortical gliosis. Nat. Med., 5, 454–7CrossRefGoogle Scholar
Goedert, M., Satumtira, S., Jakes, R.et al. (2000). Reduced binding of protein phosphatase 2A to tau protein with frontotemporal dementia and parkinsonism linked to chromosome 17 mutations. J. Neurochem., 75, 2155–62CrossRefGoogle ScholarPubMed
Goode, B. L. & Feinstein, S. C. (1994). Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau. J. Cell Biol., 124, 769–82CrossRefGoogle ScholarPubMed
Goode, B. L., Denis, P. E., Panda, D.et al. (1997). Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly. Mol. Biol. Cel., 8, 353–65CrossRefGoogle Scholar
Götz, J. (2001). Tau and transgenic animal models. Brain Res. Rev., 35, 266–86CrossRefGoogle ScholarPubMed
Götz, J., Chen, F., Barmettler, R. & Nitsch, R. M. (2001a). Tau filament formation in transgenic mice expressing P301L tau. J. Biol. Chem., 276, 529–34CrossRefGoogle Scholar
Götz, J., Chen, F., Dorpe, J. & Nitsch, R. M. (2001b). Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Abeta 42 fibrils. Science, 293, 1491–5CrossRefGoogle Scholar
Götz, J., Tolnay, M., Barmettler, R., Chen, F., Probst, A. & Nitsch, R. M. (2001c). Oligodendroglial tau filament formation in transgenic mice expressing G272V tau. Eur. J. Neurosci., 13, 2131–40CrossRefGoogle Scholar
Grover, A., Houlden, H., Baker, M.et al. (1999). 5′ splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem–loop structure that regulates alternative splicing of exon 10. J. Biol. Chem., 274, 15134–43CrossRefGoogle ScholarPubMed
Grover, A., DeTure, M., Yen, S. H. & Hutton, M. (2002). Effects on splicing and protein function of three mutations in codon N296 of tau in vitro. Neurosci. Lett., 323, 33–6CrossRefGoogle ScholarPubMed
Hall, G. F., Yao, J. & Lee, G. (1997). Human tau becomes phosphorylated and forms filamentous deposits when overexpressed in lamprey central neurons in situ. Proc. Natl Acad. Sci., USA, 94, 4733–8CrossRefGoogle ScholarPubMed
Hall, G. F., Chu, B., Lee, G. & Yao, J. (2000). Human tau filaments induce microtubule and synapse loss in an in vivo model of neurofibrillary degenerative disease. J. Cell Sci., 113 (8), 1373–87Google Scholar
Hasegawa, M., Jakes, R., Crowther, R. A., Lee, V. M.-Y., Ihara, Y. & Goedert, M. (1996). Characterization of mAb AP422, a novel phosphorylation-dependent monoclonal antibody against tau protein. FEBS Lett., 384, 25–30CrossRefGoogle ScholarPubMed
Hasegawa, M., Smith, M. J. & Goedert, M. (1998). Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly. FEBS Lett., 437, 207–10CrossRefGoogle ScholarPubMed
Hasegawa, M., Smith, M. J., Iijima, M., Tabira, T. & Goedert, M. (1999). FTDP-17 mutations N279K and S305N in tau produce increased splicing of exon 10. FEBS Lett., 443, 93–6CrossRefGoogle ScholarPubMed
Hayashi, S., Toyoshima, Y., Hasegawa, M.et al. (2002). Late-onset frontotemporal dementia with a novel exon 1 (Arg5His) tau gene mutation. Ann. Neurol., 51, 525–30CrossRefGoogle ScholarPubMed
Heutink, P., Stevens, M., Rizzu, P.et al. (1997). Hereditary frontotemporal dementia is linked to chromosome 17q21–q22: a genetic and clinicopathological study of three Dutch families. Ann. Neurol., 41, 150–9CrossRefGoogle ScholarPubMed
Himmler, A., Drechsel, D., Kirschner, M. W. & Martin, D. W. Jr. (1989). Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol. Cell Biol., 9, 1381–8CrossRefGoogle ScholarPubMed
Ho, L., Xiang, Z., Mukherjee, P.et al. (2001). Gene expression profiling of the tau mutant (P301L) transgenic mouse brain. Neurosci. Lett., 310, 1–4CrossRefGoogle ScholarPubMed
Hoffmann, R., Lee, V. M.-Y., Leight, S., Varga, I. & Otvos, L. Jr. (1997). Unique Alzheimer's disease paired helical filament specific epitopes involve double phosphorylation at specific sites. Biochemistry, 36, 8114–24CrossRefGoogle ScholarPubMed
Hong, M., Zhukareva, V., Vogelsberg-Ragaglia, V.et al. (1998). Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science, 282, 1914–17CrossRefGoogle ScholarPubMed
Hong, M., Trojanowski, J. Q. & Lee, V. M.-Y., (2000). Tau-based neurofibrillary lesions. In: Neurodegenerative Dementias, ed. C. M. Clark & J. Q. Trojanowski, pp. 161–75. New York: McGrawHill
Hosler, B. A., Siddique, T., Sapp, P. C.et al. (2000). Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21–q22. J. Am. Med. Assoc., 284, 1664–9CrossRefGoogle ScholarPubMed
Houlden, H., Baker, M., Adamson, J.et al. (1999). Frequency of tau mutations in three series of non-Alzheimer's degenerative dementia. Ann. Neurol., 46, 243–83.0.CO;2-L>CrossRefGoogle ScholarPubMed
Hulette, C. M., Pericak-Vance, M. A., Roses, A. D.et al. (1999). Neuropathological features of frontotemporal dementia and parkinsonism linked to chromosome 17q21–22 (FTDP-17): Duke Family 1684. J. Neuropathol. Exp. Neurol., 58, 859–66CrossRefGoogle ScholarPubMed
Hutton, M., Lendon, C. L., Rizzu, P.et al. (1998). Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature, 393, 702–5CrossRefGoogle ScholarPubMed
Iijima, M., Tabira, T., Poorkaj, P.et al. (1999). A distinct familial presenile dementia with a novel missense mutation in the tau gene. Neuroreport, 10, 497–501CrossRefGoogle ScholarPubMed
Iseki, E., Matsumura, T., Marui, W.et al. (2001). Familial frontotemporal dementia and parkinsonism with a novel N296H mutation in exon 10 of the tau gene and a widespread tau accumulation in glial cells. Acta Neuropathol., 102, 285–92Google Scholar
Jackson, J. R., Wiedau-Pazos, M., Sang, T.-K.et al. (2002). Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron, 34, 509–19CrossRefGoogle ScholarPubMed
Janssen, J. C., Warrington, E. K., Morris, H. R.et al. (2002). Clinical features of frontotemporal dementia due to the intronic tau 10(+16) mutation. Neurology, 58, 1161–8CrossRefGoogle ScholarPubMed
Jiang, Z., Cote, J., Kwon, J. M., Goate, A. M. & Wu, J. Y. (2000). Aberrant splicing of tau pre-mRNA caused by intronic mutations associated with the inherited dementia frontotemporal dementia with parkinsonism linked to chromosome 17. Mol. Cell Biol., 20, 4036–48CrossRefGoogle ScholarPubMed
Jicha, G. A., Rockwood, J. M., Berenfeld, B., Hutton, M. & Davies, P. (1999). Altered conformation of recombinant frontotemporal dementia-17 mutant tau proteins. Neurosci. Lett., 260, 153–6CrossRefGoogle ScholarPubMed
Kawai, J., Sasahara, M., Hazama, F.et al. (1993). Pallidonigroluysian degeneration with iron deposition: a study of three autopsy cases. Acta Neuropathol. (Berl.), 86, 609–16CrossRefGoogle ScholarPubMed
Kiuchi, A., Otsuka, N., Namba, Y., Nakano, I. & Tomonaga, M. (1991). Presenile appearance of abundant Alzheimer's neurofibrillary tangles without senile plaques in the brain in myotonic dystrophy. Acta Neuropathol. (Berl.), 82, 1–5CrossRefGoogle ScholarPubMed
Knopman, D. S., Mastri, A. R., Frey, W. H., Sung, J. H. & Rustan, T. (1990). Dementia lacking distinctive histologic features: a common non-Alzheimer degenerative dementia. Neurology, 40, 251–6CrossRefGoogle ScholarPubMed
Kodama, K., Okada, S., Iseki, E.et al. (2000). Familial frontotemporal dementia with a P301L tau mutation in Japan. J. Neurol. Sci., 176, 57–64CrossRefGoogle ScholarPubMed
Komori, T. (1999). Tau-positive glial inclusions in progressive supranuclear palsy, corticobasal degeneration and Pick's disease. Brain Pathol., 9, 663–79CrossRefGoogle ScholarPubMed
Kovach, M. J., Waggoner, B., Leal, S. M.et al. (2001). Clinical delineation and localization to chromosome 9p13.3–p12 of a unique dominant disorder in four families: hereditary inclusion body myopathy, Paget's disease of bone, and frontotemporal dementia. Mol. Genet. Metab., 74, 458–75CrossRefGoogle ScholarPubMed
Lee, G., Neve, R. L. & Kosik, K. S. (1989). The microtubule binding domain of tau protein. Neuron, 2, 1615–24CrossRefGoogle ScholarPubMed
Lee, V. M.-Y., Goedert, M. & Trojanowski, J. Q. (2001). Neurodegenerative tauopathies. Ann. Rev. Neurosci., 24, 1121–59CrossRefGoogle ScholarPubMed
Lendon, C. L., Lynch, T., Norton, J.et al. (1998). Hereditary dysphasic disinhibition dementia: a frontotemporal dementia linked to 17q21–22. Neurology, 50, 1546–55CrossRefGoogle ScholarPubMed
Lewis, J., McGowan, E., Rockwood, J.et al. (2000). Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat. Genet., 25, 402–5CrossRefGoogle ScholarPubMed
Lewis, J., Dickson, D. W., Lin, W. L.et al. (2001). Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science, 293, 1487–91CrossRefGoogle ScholarPubMed
Lippa, C. F., Zhukareva, V., Kawarai, T.et al. (2000). Frontotemporal dementia with novel tau pathology and a Glu342Val tau mutation. Ann. Neurol., 48, 850–83.0.CO;2-V>CrossRefGoogle Scholar
LoPresti, P., Szuchet, S., Papasozomenos, S. C., Zinkowski, R. P. & Binder, L. I. (1995). Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes. Proc. Natl Acad. Sci., USA, 92, 10369–73CrossRefGoogle ScholarPubMed
Lund and Manchester Groups (1994). Clinical and neuropathological criteria for frontotemporal dementia. J. Neurol. Neurosurg. Psychiatr., 57, 416–18CrossRef
Matsumura, N., Yamazaki, T. & Ihara, Y. (1999). Stable expression in Chinese hamster ovary cells of mutated tau genes causing frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Am. J. Pathol., 154, 1649–56CrossRefGoogle Scholar
McKhann, G. M., Albert, M. S., Grossman, M., Miller, B., Dickson, D. & Trojanowski, J. Q. (2001). Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch. Neurol., 58, 1803–9CrossRefGoogle ScholarPubMed
Mirra, S. S., Murrell, J. R., Gearing, M.et al. (1999). Tau pathology in a family with dementia and a P301L mutation in tau. J. Neuropathol. Exp. Neurol., 58, 335–45CrossRefGoogle Scholar
Miyamoto, K., Kowalska, A., Hasegawa, M.et al. (2001). Familial frontotemporal dementia and parkinsonism with a novel mutation at an intron 10+11-splice site in the tau gene. Ann. Neurol., 50, 117–20CrossRefGoogle ScholarPubMed
Miyasaka, T., Morishima-Kawashima, M., Ravid, R., Kamphorst, W., Nagashima, K. & Ihara, Y. (2001). Selective deposition of mutant tau in the FTDP-17 brain affected by the P301L mutation. J. Neuropathol. Exp. Neurol., 60, 872–84CrossRefGoogle ScholarPubMed
Morris, H. R., Perez-Tur, J., Janssen, J. C.et al. (1999). Mutation in the tau exon 10 splice site region in familial frontotemporal dementia. Ann. Neurol., 45, 270–13.0.CO;2-2>CrossRefGoogle ScholarPubMed
Morris, H. R., Khan, M. N., Janssen, J. C.et al. (2001). The genetic and pathological classification of familial frontotemporal dementia. Arch. Neurol., 58, 1813–16CrossRefGoogle ScholarPubMed
Murrell, J. R., Koller, D., Foroud, T.et al. (1997). Familial multiple-system tauopathy with presenile dementia is localized to chromosome 17. Am. J. Hum. Genet., 61, 1131–8CrossRefGoogle ScholarPubMed
Murrell, J. R., Spillantini, M. G., Zolo, P.et al. (1999). Tau gene mutation G389R causes a tauopathy with abundant pick body-like inclusions and axonal deposits. J. Neuropathol. Exp. Neurol., 58, 1207–26CrossRef
Nacharaju, P., Lewis, J., Easson, C., Yen, S., Hackett, J., Hutton, M. & Yen, S. H. (1999). Accelerated filament formation from tau protein with specific FTDP-17 missense mutations. FEBS Lett., 447, 195–9CrossRefGoogle ScholarPubMed
Nagiec, E. W., Sampson, K. E. & Abraham, I. (2001). Mutated tau binds less avidly to microtubules than wildtype tau in living cells. J. Neurosci. Res., 63, 268–753.0.CO;2-E>CrossRefGoogle ScholarPubMed
Nasreddine, Z. S., Loginov, M., Clark, L. N.et al. (1999). From genotype to phenotype: a clinical pathological, and biochemical investigation of frontotemporal dementia and parkinsonism (FTDP-17) caused by the P301L tau mutation. Ann. Neurol., 45, 704–153.0.CO;2-X>CrossRefGoogle ScholarPubMed
Neumann, M., Schulz-Schaeffer, W., Crowther, R. A.et al. (2001). Pick's disease associated with the novel Tau gene mutation K369I. Ann. Neurol., 50, 503–13CrossRefGoogle ScholarPubMed
Neve, R. L., Harris, P., Kosik, K. S., Kurnit, D. M. & Donlon, T. A. (1986). Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Brain Res., 387, 271–80Google ScholarPubMed
Pastor, P., Pastor, E., Carnero, C.et al. (2001). Familial atypical progressive supranuclear palsy associated with homozygosity for the delN296 mutation in the tau gene. Ann. Neurol., 49, 263–73.0.CO;2-K>CrossRefGoogle ScholarPubMed
Perez, M., Lim, F., Arrasate, M. & Avila, J. (2000). The FTDP-17-linked mutation R406W abolishes the interaction of phosphorylated tau with microtubules. J. Neurochem., 74, 2583–9CrossRefGoogle ScholarPubMed
Pick, A. (1892). Über die Bejiehungen der senilen Hirnatrophie zur Aphasie. Prager. Med. Wochenschr., 17, 165–7Google Scholar
Pickering-Brown, S., Baker, M., Yen, S. H.et al. (2000). Pick's disease is associated with mutations in the tau gene. Ann. Neurol., 48, 859–673.0.CO;2-1>CrossRefGoogle ScholarPubMed
Pickering-Brown, S. M., Richardson, A. M., Snowden, J. S.et al. (2002). Inherited frontotemporal dementia in nine British families associated with intronic mutations in the tau gene. Brain, 125, 732–51CrossRefGoogle ScholarPubMed
Poorkaj, P., Bird, T. D., Wijsman, E.et al. (1998). Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann. Neurol., 43, 815–25CrossRefGoogle ScholarPubMed
Poorkaj, P., Grossman, M., Steinbart, E.et al. (2001). Frequency of tau gene mutations in familial and sporadic cases of non-Alzheimer dementia. Arch. Neurol., 58, 383–7CrossRefGoogle ScholarPubMed
Poorkaj, P., Muma, N. A., Zhukareva, V.et al. (2002). An R5L tau mutation in a subject with a progressive supranuclear palsy phenotype. Ann. Neurol., 52, 511–16CrossRefGoogle Scholar
Reed, L. A., Grabowski, T. J., Schmidt, M. L.et al. (1997). Autosomal dominant dementia with widespread neurofibrillary tangles. Ann. Neurol., 42, 564–72CrossRefGoogle ScholarPubMed
Reed, L. A., Schmidt, M. L., Wszolek, Z. K.et al. (1998). The neuropathology of a chromosome 17-linked autosomal dominant parkinsonism and dementia (‘pallido-ponto-nigral degeneration’). J. Neuropathol. Exp. Neurol., 57, 588–601CrossRefGoogle Scholar
Reed, L. A., Wszolek, Z. K. & Hutton, M. (2001). Phenotypic correlations in FTDP-17. Neurobiol. Agin., 22, 89–107CrossRefGoogle ScholarPubMed
Rizzini, C., Goedert, M., Hodges, J. R.et al. (2000). Tau gene mutation K257T causes a tauopathy similar to Pick's disease. J. Neuropathol. Exp. Neurol., 59, 990–1001CrossRefGoogle ScholarPubMed
Rizzu, P., Swieten, J. C., Joosse, M.et al. (1999). High prevalence of mutations in the microtubule-associated protein tau in a population study of frontotemporal dementia in the Netherlands. Am. J. Hum. Genet., 64, 414–21CrossRefGoogle Scholar
Rizzu, P., Joosse, M., Ravid, R.et al. (2000). Mutation-dependent aggregation of tau protein and its selective depletion from the soluble fraction in brain of P301L FTDP-17 patients. Hum. Mol. Genet., 9, 3075–82CrossRefGoogle ScholarPubMed
Rosso, S. M., Kamphorst, W., Graaf, B.et al. (2001). Familial frontotemporal dementia with ubiquitin-positive inclusions is linked to chromosome 17q21–22. Brain, 124, 1948–57CrossRefGoogle ScholarPubMed
Rosso, S. M., Kamphorst, W., Ravid, R. & Swieten, J. C. (2000). Coexistent tau and amyloid pathology in hereditary frontotemporal dementia with tau mutations. Ann. NY. Acad. Sci., 920, 115–19CrossRefGoogle ScholarPubMed
Rosso, S. M., Herpen, E., Deelen, W.et al. (2002). A novel tau mutation, S320F, causes a tauopathy with inclusions similar to those in Pick's disease. Ann. Neurol., 51, 373–6CrossRefGoogle ScholarPubMed
Sahara, N., Tomiyama, T. & Mori, H. (2000). Missense point mutations of tau to segregate with FTDP-17 exhibit site-specific effects on microtubule structure in COS cells: a novel action of R406W mutation. J. Neurosci. Res., 60, 380–73.0.CO;2-5>CrossRefGoogle ScholarPubMed
Saito, Y., Geyer, A., Sasaki, R.et al. (2002). Early-onset, rapidly progressive familial tauopathy with R406W mutation. Neurology, 58, 811–13CrossRefGoogle ScholarPubMed
Sanders, J., Schenk, V. & Veen, P. (1939). A family with Pick's disease. Veerhandelingen de Koninklijke Nederlandse Akadamie van WetenschappenGoogle Scholar
Schenk, V. (1959). Re-examination of a family with Pick's disease. Ann. Hum. Genet., 23, 325–33CrossRefGoogle ScholarPubMed
Senapathy, P., Shapiro, M. B. & Harris, N. L. (1990). Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Methods Enzymol., 183, 252–78CrossRefGoogle ScholarPubMed
Sergeant, N., Sablonniere, B., Schraen-Maschke, S.et al. (2001). Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1. Hum. Mol. Genet., 10, 2143–55CrossRefGoogle ScholarPubMed
Shin, R. W., Iwaki, T., Kitamoto, T. & Tateishi, J. (1991). Hydrated autoclave pretreatment enhances tau immunoreactivity in formalin-fixed normal and Alzheimer's disease brain tissues. Lab. Invest., 64, 693–702Google ScholarPubMed
Si, Z. H., Rauch, D. & Stoltzfus, C. M. (1998). The exon splicing silencer in human immunodeficiency virus type 1 Tat exon 3 is bipartite and acts early in spliceosome assembly. Mol. Cell Biol., 18, 5404–13CrossRefGoogle ScholarPubMed
Sperfeld, A. D., Collatz, M. B., Baier, H.et al. (1999). FTDP-17: an early-onset phenotype with parkinsonism and epileptic seizures caused by a novel mutation. Ann. Neurol., 46, 708–153.0.CO;2-K>CrossRefGoogle ScholarPubMed
Spillantini, M. G., Crowther, R. A. & Goedert, M. (1996). Comparison of the neurofibrillary pathology in Alzheimer's disease and familial presenile dementia with tangles. Acta Neuropathol. (Berl.), 92, 42–8CrossRefGoogle ScholarPubMed
Spillantini, M. G., Bird, T. D. & Ghetti, B. (1998a). Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol., 8, 387–402CrossRefGoogle Scholar
Spillantini, M. G., Crowther, R. A., Kamphorst, W., Heutink, P. & Swieten, J. C. (1998b). Tau pathology in two Dutch families with mutations in the microtubule-binding region of tau. Am. J. Pathol., 153, 1359–63CrossRefGoogle Scholar
Spillantini, M. G., Murrell, J. R., Goedert, M., Farlow, M. R., Klug, A. & Ghetti, B. (1998c). Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc. Natl Acad. Sci., USA, 95, 7737–41CrossRefGoogle Scholar
Spillantini, M. G., Yoshida, H., Rizzini, C.et al. (2000). A novel tau mutation (N296N) in familial dementia with swollen achromatic neurons and corticobasal inclusion bodies. Ann. Neurol., 48, 939–433.0.CO;2-1>CrossRefGoogle ScholarPubMed
Stanford, P. M., Halliday, G. M., Brooks, W. S.et al. (2000). Progressive supranuclear palsy pathology caused by a novel silent mutation in exon 10 of the tau gene: expansion of the disease phenotype caused by tau gene mutations. Brain, 123, 880–93CrossRefGoogle ScholarPubMed
Stevens, M., Duijn, C. M., Kamphorst, W.et al. (1998). Familial aggregation in frontotemporal dementia. Neurology, 50, 1541–5CrossRefGoogle ScholarPubMed
Sumi, S. M., Bird, T. D., Nochlin, D. & Raskind, M. A. (1992). Familial presenile dementia with psychosis associated with cortical neurofibrillary tangles and degeneration of the amygdala. Neurology, 42, 120–7CrossRefGoogle ScholarPubMed
Tanaka, K., Watakabe, A. & Shimura, Y. (1994). Polypurine sequences within a downstream exon function as a splicing enhancer. Mol. Cell Biol., 14, 1347–54CrossRefGoogle ScholarPubMed
Tanaka, R., Kobayashi, T., Motoi, Y., Anno, M., Mizuno, Y. & Mori, H. (2000). A case of frontotemporal dementia with tau P301L mutation in the Far East. J. Neurol., 247, 705–7CrossRefGoogle ScholarPubMed
Tanemura, K., Akagi, T., Murayama, M.et al. (2001). Formation of filamentous tau aggregations in transgenic mice expressing V337M human tau. Neurobiol. Dis., 8, 1036–45CrossRefGoogle ScholarPubMed
Tanemura, K., Murayama, M., Akagi, T.et al. (2002). Neurodegeneration with tau accumulation in a transgenic mouse expressing V337M human tau. J. Neurosci., 22, 133–41CrossRefGoogle Scholar
Tolnay, M., Grazia, S. M., Rizzini, C., Eccles, D., Lowe, J. & Ellison, D. (2000). A new case of frontotemporal dementia and parkinsonism resulting from an intron 10 +3-splice site mutation in the tau gene: clinical and pathological features. Neuropathol. Appl. Neurobiol., 26, 368–78CrossRefGoogle ScholarPubMed
Swieten, J. C., Stevens, M., Rosso, S. M.et al. (1999). Phenotypic variation in hereditary frontotemporal dementia with tau mutations. Ann. Neurol., 46, 617–263.0.CO;2-I>CrossRefGoogle ScholarPubMed
Varani, L., Hasegawa, M., Spillantini, M. G.et al. (1999). Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17. Proc. Natl Acad. Sci., USA, 96, 8229–34CrossRefGoogle ScholarPubMed
Vogelsberg-Ragaglia, V., Bruce, J., Richter-Landsberg, C.et al. (2000). Distinct FTDP-17 missense mutations in tau produce tau aggregates and other pathological phenotypes in transfected CHO cells. Mol. Biol. Cel., 11, 4093–104CrossRefGoogle ScholarPubMed
Bergen, M., Friedhoff, P., Biernat, J., Heberle, J., Mandelkow, E. M. & Mandelkow, E. (2000). Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc. Natl Acad. Sci., USA, 97, 5129–34CrossRefGoogle Scholar
Bergen, M., Barghorn, S., Li, L.et al. (2001). Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure. J. Biol. Chem., 276, 48165–74CrossRefGoogle Scholar
Weingarten, M. D., Lockwood, A. H., Hwo, S. Y. & Kirschner, M. W. (1975). A protein factor essential for microtubule assembly. Proc. Natl Acad. Sci., USA, 72, 1858–62CrossRefGoogle ScholarPubMed
Wijker, M., Wszolek, Z. K., Wolters, E. C.et al. (1996). Localization of the gene for rapidly progressive autosomal dominant parkinsonism and dementia with pallido-ponto-nigral degeneration to chromosome 17q21. Hum. Mol. Genet., 5, 151–4CrossRefGoogle ScholarPubMed
Wilhelmsen, K. C., Lynch, T., Pavlou, E., Higgins, M. & Nygaard, T. G. (1994). Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21–22. Am. J. Hum. Genet., 55, 1159–65Google ScholarPubMed
Wittmann, C. W., Wszolek, M. F., Shulman, J. M.et al. (2001). Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science, 293, 711–14CrossRefGoogle ScholarPubMed
Yasuda, M., Kawamata, T., Komure, O.et al. (1999). A mutation in the microtubule-associated protein tau in pallido-nigro-luysian degeneration. Neurology, 53, 864–8CrossRefGoogle ScholarPubMed
Yasuda, M., Takamatsu, J., D'Souza, I.et al. (2000a). A novel mutation at position +12 in the intron following exon 10 of the tau gene in familial frontotemporal dementia (FTD-Kumamoto). Ann. Neurol., 47, 422–93.0.CO;2-G>CrossRefGoogle Scholar
Yasuda, M., Yokoyama, K., Nakayasu, T.et al. (2000b). A Japanese patient with frontotemporal dementia and parkinsonism by a tau P301S mutation. Neurology, 55, 1224–7CrossRefGoogle Scholar
Yen, S., Easson, C., Nacharaju, P., Hutton, M. & Yen, S. H. (1999a). FTDP-17 tau mutations decrease the susceptibility of tau to calpain I digestion. FEBS Lett., 461, 91–5CrossRefGoogle Scholar
Yen, S. H., Hutton, M., DeTure, M., Ko, L. W. & Nacharaju, P. (1999b). Fibrillogenesis of tau: insights from tau missense mutations in FTDP-17. Brain Pathol., 9, 695–705CrossRefGoogle Scholar
Yoshida, H. & Ihara, Y. (1993). Tau in paired helical filaments is functionally distinct from fetal tau: assembly incompetence of paired helical filament-tau. J. Neurochem., 61, 1183–6CrossRefGoogle ScholarPubMed
Zheng-Fischhofer, Q., Biernat, J., Mandelkow, E. M., Illenberger, S., Godemann, R. & Mandelkow, E. (1998). Sequential phosphorylation of Tau by glycogen synthase kinase-3beta and protein kinase A at Thr212 and Ser214 generates the Alzheimer-specific epitope of antibody AT100 and requires a paired-helical-filament-like conformation. Eur. J. Biochem., 252, 542–52CrossRefGoogle ScholarPubMed
Zhukareva, V., Vogelsberg-Ragaglia, V., Deerlin, V. M.et al. (2001). Loss of brain tau defines novel sporadic and familial tauopathies with frontotemporal dementia. Ann. Neurol., 49, 165–753.0.CO;2-3>CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×