Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T02:49:06.252Z Has data issue: false hasContentIssue false

4 - Cell migration

Published online by Cambridge University Press:  22 August 2009

Leanne Godinho
Affiliation:
Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
Brian Link
Affiliation:
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
Evelyne Sernagor
Affiliation:
University of Newcastle upon Tyne
Stephen Eglen
Affiliation:
University of Cambridge
Bill Harris
Affiliation:
University of Cambridge
Rachel Wong
Affiliation:
Washington University, St Louis
Get access

Summary

Introduction

Like most parts of the CNS, retinal cells are generated some distance from where they will ultimately reside. Migration to the correct place at the right time is vital for their ability to make appropriate synaptic connections and function normally. Understanding how each of the seven retinal cell types migrate to their appropriate layer is critical to understanding how this CNS structure becomes organized during development.

The entire retinal neuroepithelium is a proliferative zone early in development. Retinal neuroepithelial cells with cytoplasmic processes that extend from the outer limiting membrane (OLM) to the inner limiting membrane (ILM) engage in interkinetic nuclear migration, a process by which their nuclei migrate within the cytoplasm, undergoing different phases of the cell cycle at different depths within the neuroepithelium (see Chapter 3). Thus, neuroepithelial cells in S-phase have their nuclei positioned near the ILM, and they enter M-phase at the OLM. Consequently, following a final mitotic divison, when cells leave the cell cycle they do so adjacent to the OLM. Newborn postmitotic cells therefore need to migrate varying distances to take up residence in one of the three prospective cellular layers. Cells destined for the ganglion cell layer (GCL), for example, have comparatively longer distances to travel than rod and cone photoreceptors. Birthdating studies in diverse species have shown that the first cohort of cells to become postmitotic are ganglion cells (Prada et al., 1991; Rapaport et al., 1996, 2004; Hu and Easter, 1999) (see Chapter 3).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anton, E. S., Cameron, R. S. and Rakic, P. (1996). Role of neuron-glial junctional domain proteins in the maintenance and termination of neuronal migration across the embryonic cerebral wall. J. Neurosci., 16, 2283–93CrossRefGoogle ScholarPubMed
Bennett, G. S. and DiLullo, C. (1985). Transient expression of a neurofilament protein by replicating neuroepithelial cells of the embryonic chick brain. Dev. Biol., 107, 107–27CrossRefGoogle ScholarPubMed
Brittis, P. A., Meiri, K., Dent, E. and Silver, J. (1995). The earliest patterns of neuronal differentiation and migration in the mammalian central nervous system. Exp. Neurol., 134, 1–12CrossRefGoogle ScholarPubMed
Carter-Dawson, L. D. and LaVail, M. M. (1979). Rods and cones in the mouse retina. II. Autoradiographic analysis of cell generation using tritiated thymidine. J. Comp. Neurol., 188, 263–72CrossRefGoogle ScholarPubMed
Colognato, H. and Yurchenco, P. D. (2000). Form and function: the laminin family of heterotrimers. Dev. Dyn., 218, 213–343.0.CO;2-R>CrossRefGoogle ScholarPubMed
Das, T., Payer, B., Cayouette, M. and Harris, W. A. (2003). In vivo time-lapse imaging of cell divisions during neurogenesis in the developing zebrafish retina. Neuron, 37, 597–609CrossRefGoogle ScholarPubMed
Dong, S., Landfair, J., Balasubramani, M.et al. (2002). Expression of basal lamina protein mRNAs in the early embryonic chick eye. J. Comp. Neurol., 447, 261–73CrossRefGoogle ScholarPubMed
Dunlop, S. A. (1990). Early development of retinal ganglion cell dendrites in the marsupial Setonix brachyurus, quokka. J. Comp. Neurol., 293, 425–47CrossRefGoogle ScholarPubMed
Edmondson, J. C. and Hatten, M. E. (1987). Glial-guided granule neuron migration in vitro: a high-resolution time-lapse video microscopic study. J. Neurosci., 7, 1928–34CrossRefGoogle ScholarPubMed
Edqvist, P. H. and Hallbook, F. (2004). New-born horizontal cells migrate bi–directionally across the neuroepithelium during retinal development. Development, 131, 1343–51CrossRefGoogle Scholar
Fekete, D. M., Perez-Miguelsanz, J., Ryder, E. F. and Cepko, C. L. (1994). Clonal analysis in the chicken retina reveals tangential dispersion of clonally related cells. Dev. Biol., 166, 666–82CrossRefGoogle ScholarPubMed
Fukata, M., Nakagawa, M. and Kaibuchi, K. (2003). Roles of Rho-family GTPases in cell polarisation and directional migration. Curr. Opin. Cell. Biol., 15, 590–7CrossRefGoogle ScholarPubMed
Gadisseux, J. F., Kadhim, H. J., Bosch de Aguilar, P., Caviness, V. S. and Evrard, P. (1990). Neuron migration within the radial glial fiber system of the developing murine cerebrum: an electron microscopic autoradiographic analysis. Brain Res. Dev. Brain. Res., 52, 39–56CrossRefGoogle ScholarPubMed
Galli-Resta, L., Resta, G., Tan, S. S. and Reese, B. E. (1997). Mosaics of islet-1- expressing amacrine cells assembled by short-range cellular interactions. J. Neurosci., 17, 7831–8CrossRefGoogle ScholarPubMed
Georges-Labouesse, E., Mark, M., Messaddeq, N. and Gansmuller, A. (1998). Essential role of alpha 6 integrins in cortical and retinal lamination. Curr. Biol., 8, 983–6CrossRefGoogle ScholarPubMed
Gilmour, D., Knaut, H., Maischein, H. M. and Nusslein-Volhard, C. (2004). Towing of sensory axons by their migrating target cells in vivo. Nat. Neurosci., 7, 491–2CrossRefGoogle ScholarPubMed
Halfter, W. (1998). Disruption of the retinal basal lamina during early embryonic development leads to a retraction of vitreal end feet, an increased number of ganglion cells, and aberrant axonal outgrowth. J. Comp. Neurol., 397, 89–1043.0.CO;2-E>CrossRefGoogle ScholarPubMed
Halfter, W., Dong, S., Schurer, B.et al. (2000). Composition, synthesis, and assembly of the embryonic chick retinal basal lamina. Dev. Biol., 220, 111–28CrossRefGoogle ScholarPubMed
Hinds, J. W. and Hinds, P. L. (1978). Early development of amacrine cells in the mouse retina: an electron microscopic, serial section analysis. J. Comp. Neurol., 179, 277–300CrossRefGoogle ScholarPubMed
Hinds, J. W. and Hinds, P. L. (1979). Differentiation of photoreceptors and horizontal cells in the embryonic mouse retina: an electron microscopic, serial section analysis. J. Comp. Neurol., 187, 495–511CrossRefGoogle ScholarPubMed
Hinds, J. W. and Hinds, P. L. (1983). Development of retinal amacrine cells in the mouse embryo: evidence for two modes of formation. J. Comp. Neurol., 213, 1–23CrossRefGoogle ScholarPubMed
Horne-Badovinac, S., Lin, D., Waldron, S.et al. (2001). Positional cloning of heart and soul reveals multiple roles for PKC in zebrafish organogenesis. Curr. Biol., 11, 1492–502CrossRefGoogle ScholarPubMed
Hu, M. and Easter, S. S. (1999). Retinal neurogenesis: the formation of the initial central patch of post-mitotic cells. Dev. Biol., 207, 309–21CrossRefGoogle Scholar
Jensen, A. M. and Westerfield, M. (2004). Zebrafish mosaic eyes is a novel FERM protein required for retinal lamination and retinal pigmented epithelial tight junction formation. Curr. Biol., 14, 711–17CrossRefGoogle ScholarPubMed
Kay, J. N., Roeser, T., Mumm, J. S.et al. (2004). Transient requirement for ganglion cells during assembly of retinal synaptic layers. Development, 131, 1331–42CrossRefGoogle ScholarPubMed
Koster, R. W. and Fraser, S. E. (2001). Direct imaging of in vivo neuronal migration in the developing cerebellum. Curr. Biol., 11, 1858–63CrossRefGoogle ScholarPubMed
Lele, Z., Folchert, A., Concha, M.et al. (2002). parachute/n-cadherin is required for morphogenesis and maintained integrity of the zebrafish neural tube. Development, 129, 3281–94Google ScholarPubMed
Lemmon, V. and Rieser, G. (1983). The development distribution of vimentin in the chick retina. Brain Res., 313, 191–7CrossRefGoogle ScholarPubMed
Li, M. and Sakaguchi, D. S. (2004). Inhibition of integrin-mediated adhesion and signaling disrupts retinal development. Dev. Biol., 275, 202–14CrossRefGoogle ScholarPubMed
Liu, W., Wang, J. H. and Xiang, M. (2000). Specific expression of the LIM/homeodomain protein Lim-1 in horizontal cells during retinogenesis. Dev. Dyn., 217, 320–53.0.CO;2-F>CrossRefGoogle ScholarPubMed
Malicki, J. (2004). Cell fate decisions and patterning in the vertebrate retina: the importance of timing, asymmetry, polarity and waves. Curr. Opin. Neurobiol., 14, 15–21CrossRefGoogle Scholar
Malicki, J. and Driever, W. (1999). oko meduzy mutations affect neuronal patterning in the zebrafish retina and reveal cell–cell interactions of the retinal neuroepithelial sheet. Development, 126, 1235–46Google ScholarPubMed
Malicki, J., Jo, H. and Pujic, Z. (2003). Zebrafish N-cadherin, encoded by the glass onion locus, plays an essential role in retinal patterning. Dev. Biol., 259, 95–108CrossRefGoogle ScholarPubMed
Malosio, M. L., Gilardelli, D., Paris, S., Albertinazzi, C. and Curtis, I. (1997). Differential expression of distinct members of Rho family GTP-binding proteins during neuronal development: identification of Rac1B, a new neural-specific member of the family. J. Neurosci., 17, 6717–28CrossRefGoogle Scholar
Masai, I., Lele, Z., Yamaguchi, M.et al. (2003). N-cadherin mediates retinal lamination, maintenance of forebrain compartments and patterning of retinal neurites. Development, 130, 2479–94CrossRefGoogle ScholarPubMed
Matsunaga, M., Hatta, K. and Takeichi, M. (1988). Role of N-cadherin cell adhesion molecules in the histogenesis of neural retina. Neuron, 1, 289–95CrossRefGoogle ScholarPubMed
McLoon, S. C. and Barnes, R. B. (1989). Early differentiation of retinal ganglion cells: an axonal protein expressed by premigratory and migrating retinal ganglion cells. J. Neurosci., 9, 1424–32CrossRefGoogle ScholarPubMed
Meller, K. and Tetzlaff, W. (1976). Scanning electron microscopic studies on the development of the chick retina. Cell Tissue Res., 170, 145–59CrossRefGoogle ScholarPubMed
Meyer, G. and Feldman, E. L. (2002). Signalling mechanisms that regulate actin-based motility processes in the nervous system. J. Neurochem., 83, 490–503CrossRefGoogle Scholar
Misson, J. P., Austin, C. P., Takahashi, T., Cepko, C. L. and Caviness, V. S. Jr. (1991). The alignment of migrating neural cells in relation to the murine neopallial radial glial fiber system. Cereb. Cortex, 1, 221–9CrossRefGoogle ScholarPubMed
Miyata, T., Kawaguchi, A., Okano, H. and Ogawa, M. (2001). Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron, 31, 727–41CrossRefGoogle ScholarPubMed
Morest, D. K. (1970). The pattern of neurogenesis in the retina of the rat. Z. Anat. Entwicklungsgesch, 131, 45–67CrossRefGoogle ScholarPubMed
Nadarajah, B., Brunstrom, J. E., Grutzendler, J., Wong, R. O. and Pearlman, A. L. (2001). Two modes of radial migration in early development of the cerebral cortex. Nat. Neurosci., 4, 143–50CrossRefGoogle ScholarPubMed
Nadarajah, B., Alifragis, P., Wong, R. O. and Parnavelas, J. G. (2003). Neuronal migration in the developing cerebral cortex: observations based on real-time imaging. Cereb. Cortex, 13, 607–11CrossRefGoogle ScholarPubMed
Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. and Kriegstein, A. R. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature, 409, 714–20CrossRefGoogle ScholarPubMed
O'Rourke, N. A., Dailey, M. E., Smith, S. J. and McConnell, S. K. (1992). Diverse migratory pathways in the developing cerebral cortex. Science, 258, 299–302CrossRefGoogle ScholarPubMed
Peterson, R. T., Mably, J. D., Chen, J. N. and Fishman, M. C. (2001). Convergence of distinct pathways to heart patterning revealed by the small molecule concentramide and the mutation heart-and-soul. Curr. Biol., 11, 1481–91CrossRefGoogle ScholarPubMed
Prada, C., Puelles, L. and Genis-Galvez, J. M. (1981). A Golgi study on the early sequence of differentiation of ganglion cells in the chick embryo retina. Anat. Embryol. (Berl.), 161, 305–17CrossRefGoogle ScholarPubMed
Prada, C., Puelles, L., Genis-Galvez, J. M. and Ramirez, G. (1987). Two modes of free migration of amacrine cell neuroblasts in the chick retina. Anat. Embryol. (Berl.), 175, 281–7CrossRefGoogle ScholarPubMed
Prada, C., Puga, J., Perez-Mendez, L., Lopez, R. and Ramirez, G. (1991). Spatial and temporal patterns of neurogenesis in the chick retina. Eur. J. Neurosci., 3, 559–69CrossRefGoogle ScholarPubMed
Rakic, P. (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol., 145, 61–83CrossRefGoogle ScholarPubMed
Rapaport, D. H., Rakic, P. and LaVail, M. M. (1996). Spatiotemporal gradients of cell genesis in the primate retina. Perspect. Dev. Neurobiol., 3, 147–59Google ScholarPubMed
Rapaport, D. H., Wong, L. L., Wood, E. D., Yasumura, D. and LaVail, M. M. (2004). Timing and topography of cell genesis in the rat retina. J. Comp. Neurol., 474, 304–24CrossRefGoogle ScholarPubMed
Reese, B. E., Harvey, A. R. and Tan, S. S. (1995). Radial and tangential dispersion patterns in the mouse retina are cell-class specific. Proc. Natl. Acad. Sci. U. S. A., 92, 2494–8CrossRefGoogle ScholarPubMed
Reese, B. E., Necessary, B. D. and Tam, P. P., Faulkner-Jones, B. and Tan, S. S. (1999). Clonal expansion and cell dispersion in the developing mouse retina. Eur. J. Neurosci., 11, 2965–78CrossRefGoogle ScholarPubMed
Rice, D. S. and Curran, T. (2000). Disabled-1 is expressed in type AII amacrine cells in the mouse retina. J. Comp. Neurol., 424, 327–383.0.CO;2-6>CrossRefGoogle ScholarPubMed
Rice, D. S., Nusinowitz, S., Azimi, A. M.et al. (2001). The reelin pathway modulates the structure and function of retinal synaptic circuitry. Neuron, 31, 929–41CrossRefGoogle ScholarPubMed
Ruchhoeft, M. L., Ohnuma, S., McNeill, L., Holt, C. E. and Harris, W. A. (1999). The neuronal architecture of Xenopus retinal ganglion cells is sculpted by rho-family GTPases in vivo. J. Neurosci., 19, 8454–63CrossRefGoogle ScholarPubMed
Sidman R. L. (1961). Histogenesis of mouse retina with thymidine-H3. In Structure of the Eye, ed. Smelser, G. K.. New York: Academic Press, pp. 487–506Google Scholar
Snow, R. L. and Robson, J. A. (1994). Ganglion cell neurogenesis, migration and early differentiation in the chick retina. Neuroscience, 58, 399–409CrossRefGoogle ScholarPubMed
Snow, R. L. and Robson, J. A. (1995). Migration and differentiation of neurons in the retina and optic tectum of the chick. Exp. Neurol., 134, 13–24CrossRefGoogle ScholarPubMed
Svennevik, E. and Linser, P. J. (1993). The inhibitory effects of integrin antibodies and the RGD tripeptide on early eye development. Invest. Ophthalmol. Vis. Sci., 34, 1774–84Google ScholarPubMed
Tabata, H. and Nakajima, K. (2003). Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J. Neurosci., 23, 9996–10001CrossRefGoogle ScholarPubMed
Tsai, L. H. and Gleeson, J. G. (2005). Nucleokinesis in neuronal migration. Neuron, 46, 383–8CrossRefGoogle ScholarPubMed
Turner, D. L. and Cepko, C. L. (1987). A common progenitor for neurons and glia persists in rat retina late in development. Nature, 328, 131–6CrossRefGoogle ScholarPubMed
Turner, D. L., Snyder, E. Y. and Cepko, C. L. (1990). Lineage-independent determination of cell type in the embryonic mouse retina. Neuron, 4, 833–45CrossRefGoogle ScholarPubMed
Williams, R. W. and Goldowitz, D. (1992). Structure of clonal and polyclonal cell arrays in chimeric mouse retina. Proc. Natl. Acad. Sci. U. S. A., 89, 1184–8CrossRefGoogle ScholarPubMed
Wolburg, H., Willbold, E. and Layer, P. G. (1991). Müller glia end-feet, a basal lamina and the polarity of retinal layers form properly in vitro only in the presence of marginal pigmented epithelium. Cell Tissue Res., 264, 437–51CrossRefGoogle Scholar
Wong, W. T., Faulkner-Jones, B. E., Sanes, J. R. and Wong, R. O. (2000). Rapid dendritic re-modeling in the developing retina: dependence on neurotransmission and reciprocal regulation by Rac and Rho. J. Neurosci., 20, 5024–36CrossRefGoogle Scholar
Young, R. W. (1985a). Cell differentiation in the retina of the mouse. Anat. Rec., 212, 199–205CrossRefGoogle Scholar
Young, R. W. (1985b). Cell proliferation during postnatal development of the retina in the mouse. Brain Res., 353, 229–39CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Cell migration
    • By Leanne Godinho, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA, Brian Link, Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Cell migration
    • By Leanne Godinho, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA, Brian Link, Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Cell migration
    • By Leanne Godinho, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA, Brian Link, Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
  • Edited by Evelyne Sernagor, University of Newcastle upon Tyne, Stephen Eglen, University of Cambridge, Bill Harris, University of Cambridge, Rachel Wong, Washington University, St Louis
  • Book: Retinal Development
  • Online publication: 22 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541629.006
Available formats
×