Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T11:28:35.882Z Has data issue: false hasContentIssue false

3 - Learning Not to Fear: A Neural Systems Approach

Published online by Cambridge University Press:  27 July 2009

Gregory J. Quirk
Affiliation:
Professor Department of Physiology, Ponce School of Medicine, Puerto Rico
Mohammed R. Milad
Affiliation:
Instructor Department of Psychiatry, Harvard Medical School; Assistant in Research Department of Psychiatry, Massachusetts General Hospital
Edwin Santini
Affiliation:
Postdoctoral Fellow Department of Pharmacology, Ponce School of Medicine, Puerto Rico
Kelimer Lebrón
Affiliation:
Postdoctoral Fellow Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
Laurence J. Kirmayer
Affiliation:
McGill University, Montréal
Robert Lemelson
Affiliation:
University of California, Los Angeles
Mark Barad
Affiliation:
University of California, Los Angeles
Get access

Summary

Most people who experience trauma do not develop posttraumatic stress disorder (PTSD). While 75% of adults have had a traumatic experience fulfilling current DSM–IV criteria as potential factors in the development of PTSD, only 12% actually developed PTSD (Breslau & Kessler, 2001). This suggests that the majority of persons are highly resilient in the face of trauma (Charney, 2004). What are the neural mechanisms that allow a person to recover from trauma without enduring effects? Recent work has focused on extinction of classically conditioned fear as a useful animal model of recovery after trauma. In cued fear conditioning, a tone is paired with a mild footshock. After several such pairings, rats learn that the tone predicts the shock and exhibit a range of species-specific fear responses, including freezing and potentiated startle responses (see Rau & Fanselow, this volume). In extinction, the conditioned tone is repeatedly presented without the shock, causing rats to learn that the tone is no longer dangerous. Understanding the neural mechanisms of extinction learning could lead to new treatments for PTSD, given that extinction underlies exposure-based therapies used to treat PTSD (Foa, 2000; Rothbaum & Schwartz, 2002).

EXTINCTION OF FEAR IS NEW LEARNING

While it may be tempting to think that extinction of conditioned fear simply erases the original tone–shock association, substantial behavioral evidence suggests that this is not the case.

Type
Chapter
Information
Understanding Trauma
Integrating Biological, Clinical, and Cultural Perspectives
, pp. 60 - 77
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrett, D., Shumake, J., Jones, D., & Gonzalez-Lima, F. (2003). Metabolic mapping of mouse brain activity after extinction of a conditioned emotional response. Journal of Neuroscience, 23(13), 5740–5749.CrossRefGoogle ScholarPubMed
Baum, M. (1988).Spontaneous recovery from the effects of flooding (exposure) in animals. Behaviour Research and Therapy, 26(2), 185–186.CrossRefGoogle Scholar
Berman, D. E., & Dudai, Y. (2001). Memory extinction, learning anew, and learning the new: Dissociations in the molecular machinery of learning in cortex. Science, 291(5512), 2417–2419.CrossRefGoogle ScholarPubMed
Bouton, M. E. (1993). Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychological Bulletin, 114(1), 80–99.CrossRefGoogle ScholarPubMed
Bouton, M. E., & King, D. A. (1983). Contextual control of the extinction of conditioned fear: Tests for the associative value of the context. Journal of Experimental Psychology: Animal Behavior Processes, 9(3), 248–265.Google ScholarPubMed
Bremner, J. D., Staib, L. H., Kaloupek, D., Southwick, S. M., Soufer, R., & Charney, D. S. (1999). Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: A positron emission tomography study. Biological Psychiatry, 45(7), 806–816.CrossRefGoogle ScholarPubMed
Breslau, N., & Kessler, R. C. (2001). The stressor criterion in Diagnostic and Statistical Manual-IV posttraumatic stress disorder: An empirical investigation. Biological Psychiatry, 50(9), 699–704.CrossRefGoogle Scholar
Cain, C. K., Blouin, A. M., & Barad, M. (2003).Temporally massed conditioned stimulus presentations generate more fear extinction than spaced presentations. Journal of Experimental Psychology: Animal Behavior Processes, 29(4), 323–333.Google ScholarPubMed
Caldji, C., Diorio, J., & Meaney, M. J. (2003).Variations in maternal care alter gamma-aminobutyric acidA receptor subunit expression in brain regions associated with fear. Neuropsychopharmacology, 28(11), 1950–1959.CrossRefGoogle Scholar
Cammarota, M., Bevilaqua, L. R., Kerr, D., Medina, J. H., & Izquierdo, I. (2003). Inhibition of mRNA and protein synthesis in the CA1 region of the dorsal hippocampus blocks reinstallment of an extinguished conditioned fear response. Journal of Neuroscience, 23(3), 737–741.CrossRefGoogle ScholarPubMed
Charney, D. S. (2004). Psychobiological mechanisms of resilience and vulnerabi–lity: Implications for successful adaptation to extreme stress. American Journal of Psychiatry, 161(2), 195–216.CrossRefGoogle Scholar
Corcoran, K. A., & Maren, S. (2001). Hippocampal inactivation disrupts contextual retrieval of fear memory after extinction. Journal of Neuroscience, 21(5), 1720–1726.CrossRefGoogle ScholarPubMed
Davis, M. (2000). The role of the amygdala in conditioned and unconditioned fear and anxiety. In Aggleton, J. P. (Ed.), The amygdala (pp. 213–288). Oxford: Oxford University Press.Google Scholar
Delatour, B., & Gisquet-Verrier, P. (2000). Functional role of rat prelimbic-infralimbic cortices in spatial memory: Evidence for their involvement in attention and behavioural flexibility. Behavioural Brain Research, 109(1), 113–128.CrossRefGoogle ScholarPubMed
Falls, W. A., Miserendino, M. J., & Davis, M. (1992). Extinction of fear-potentiated startle: Blockade by infusion of an N-methyl d-aspartate (receptors) antagonist into the amygdala. Journal of Neuroscience, 12(3), 854–863.CrossRefGoogle ScholarPubMed
Floyd, N. S., Price, J. L., Ferry, A. T., Keay, K. A., & Bandler, R. (2000).Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat. Journal of Comparative Neurology, 422(4), 556–578.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Foa, E. B. (2000).Psychosocial treatment of posttraumatic stress disorder. Journal of Clinical Psychiatry, 61(Suppl 5), 43–48; discussion49–51.Google ScholarPubMed
Freedman, L. J., Insel, T. R., & Smith, Y. (2000).Subcortical projections of area 25 (subgenual cortex) of the macaque monkey. Journal of Comparative Neurology, 421(2), 172–188.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Gewirtz, J. C., Falls, W. A., & Davis, M. (1997).Normal conditioned inhibition and extinction of freezing and fear-potentiated startle following electrolytic lesions of medical prefrontal cortex in rats. Behavioral Neuroscience, 111(4), 712–726.CrossRefGoogle ScholarPubMed
Gorman, J. M., Kent, J. M., Sullivan, G. M., & Coplan, J. D. (2000). Neuroanatomical hypothesis of panic disorder, revised. American Journal of Psychiatry, 157(4), 493–505.CrossRefGoogle ScholarPubMed
Hariri, A. R., Bookheimer, S. Y., & Mazziotta, J. C. (2000). Modulating emotional responses: Effects of a neocortical network on the limbic system. Neuroreport, 11(1), 43–48.CrossRefGoogle ScholarPubMed
Hariri, A. R., Mattay, V. S., Tessitore, A., Fera, F., & Weinberger, D. R. (2003). Neocortical modulation of the amygdala response to fearful stimuli. Biological Psychiatry, 53(6), 494–501.CrossRefGoogle ScholarPubMed
Herry, C., & Garcia, R. (2002). Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintenance of extinction of learned fear in mice. Journal of Neuroscience, 22(2), 577–583.CrossRefGoogle Scholar
Herry, C., & Garcia, R. (2003). Behavioral and paired-pulse facilitation analyses of long-lasting depression at excitatory synapses in the medial prefrontal cortex in mice. Behavioural Brain Research, 146(1–2), 89–96.CrossRefGoogle ScholarPubMed
Hugues, S., Deschaux, O., & Garcia, R. (2004).Postextinction infusion of a mitogen-activated protein kinase inhibitor into the medial prefrontal cortex impairs memory of the extinction of conditioned fear. Learning & Memory, 11(5), 540–543.CrossRefGoogle ScholarPubMed
Hurley, K. M., Herbert, H., Moga, M. M., & Saper, C. B. (1991). Efferent projections of the infralimbic cortex of the rat. Journal of Comparative Neurology, 308(2), 249–276.CrossRefGoogle ScholarPubMed
Jackson, D. C., Mueller, C. J., Dolski, I., Dalton, K. M., Nitschke, J. B., Urry, H. L. et al. (2003). Now you feel it, now you don't: Frontal brain electrical asymmetry and individual differences in emotion regulation. Psychological Science, 14(6), 612–617.CrossRefGoogle ScholarPubMed
Kandel, E. R. (1997). Genes, synapses, and long-term memory. Journal of Cellular Physiology, 173(2), 124–125.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Konorski, J. (1967).Integrative activity of the brain. Chicago:University of Chicago Press.Google Scholar
Lamprecht, R., & LeDoux, J. (2004). Structural plasticity and memory. Nature Reviews Neuroscience, 5(1), 45–54.CrossRefGoogle ScholarPubMed
Lanius, R. A., Williamson, P. C., Hopper, J., Densmore, M., Boksman, K., Gupta, M. A. et al. (2003). Recall of emotional states in posttraumatic stress disorder: An fMRI investigation. Biological Psychiatry, 53(3), 204–210.CrossRefGoogle Scholar
Lebron, K., Milad, M. R., & Quirk, G. J. (2004). Delayed recall of fear extinction in rats with lesions of ventral medial prefrontal cortex. Learning & Memory, 11(5), 544–548.CrossRefGoogle ScholarPubMed
LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184.CrossRefGoogle Scholar
LeDoux, J. E., Xagoraris, A., & Romanski, L. M. (1989). Indelibility of subcortical emotional memories. Journal of Cognitive Neuroscience, 1, 238–243.CrossRefGoogle ScholarPubMed
Lee, Y., Lopez, D. E., Meloni, E. G., & Davis, M. (1996). A primary acoustic startle pathway: Obligatory role of cochlear root neurons and the nucleus reticularis pontis caudalis. Journal of Neuroscience, 16(11), 3775–3789.CrossRefGoogle ScholarPubMed
Liberzon, I., Taylor, S. F., Amdur, R., Jung, T. D., Chamberlain, K. R., Minoshima, S. et al. (1999). Brain activation inPTSD in response to trauma-related stimuli. Biological Psychiatry, 45(7), 817–826.CrossRefGoogle ScholarPubMed
Lin, C. H., Yeh, S. H., Lu, H. Y., & Gean, P. W. (2003). The similarities and diversities of signal pathways leading to consolidation of conditioning and consolidation of extinction of fear memory. Journal of Neuroscience, 23, 8310–8317.CrossRefGoogle ScholarPubMed
Lu, K. T., Walker, D. L., & Davis, M. (2001).Mitogen-activated protein kinase cascade in the basolateral nucleus of amygdala is involved in extinction of fear-potentiated startle. Journal of Neuroscience, 21(16), RC162.CrossRefGoogle ScholarPubMed
Malkani, S., & Rosen, J. B. (2000). Specific induction of early growth response gene 1 in the lateral nucleus of the amygdala following contextual fear conditioning in rats. Neuroscience, 97(4), 693–702.CrossRefGoogle ScholarPubMed
Maren, S. (2001).Neurobiology of Pavlovian fear conditioning. Annual Review of Neuroscience, 24, 897–931.CrossRefGoogle ScholarPubMed
McDonald, A. J., Mascagni, F., & Guo, L. (1996). Projections of the medial and lateral prefrontal cortices to the amygdala: A phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience, 71(1), 55–75.CrossRefGoogle ScholarPubMed
McGaugh, J. L. (2000). Memory – a century of consolidation. Science, 287(5451), 248–251.CrossRefGoogle ScholarPubMed
Milad, M. R., & Quirk, G. J. (2002). Neurons in medial prefrontal cortex signal memory for fear extinction. Nature, 420(6911), 70–74.CrossRefGoogle ScholarPubMed
Milad, M. R., Quinn, B. T., Pitman, R. K., Orr, S. P., Fischl, B., & Rauch, S. L. (2005). Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proceedings of the National Academy of Science USA, 102(30), 10706–10711.CrossRefGoogle ScholarPubMed
Milad, M. R., Rauch, S. L., Pitman, R. K., & Quirk, G. J. (2006). Fear extinction in rats: Implications for human brain imaging and anxiety disorders. Biological Psychology, 73(1), 61–71.CrossRefGoogle ScholarPubMed
Milad, M. R., Vidal-Gonzalez, I., & Quirk, G. J. (2004). Electrical stimulation of medial prefrontal cortex reduces conditioned fear in a temporally specific manner. Behavioral Neuroscience, 118(2), 389–394.CrossRefGoogle Scholar
Morgan, M. A., Romanski, L. M., & LeDoux, J. E. (1993). Extinction of emotional learning: Contribution of medial prefrontal cortex. Neuroscience Letters, 163(1), 109–113.CrossRefGoogle ScholarPubMed
Morgan, M. A., Schulkin, J., & LeDoux, J. E. (2003).Ventral medial prefrontal cortex and emotional perseveration: The memory for prior extinction training. Behavioural Brain Research, 146(1–2), 121–130.CrossRefGoogle ScholarPubMed
Myers, K. M., & Davis, M. (2002). Behavioral and neural analysis of extinction. Neuron, 36(4), 567–584.CrossRefGoogle ScholarPubMed
Nair, H. P., Berndt, J. D., Barrett, D., & Gonzalez-Lima, F. (2001). Maturation of extinction behavior in infant rats: Large-scale regional interactions with medial prefrontal cortex, orbitofrontal cortex, and anterior cingulate cortex. Journal of Neuroscience, 21(12), 4400–4407.CrossRefGoogle ScholarPubMed
Orr, S. P., Metzger, L. J., Lasko, N. B., Macklin, M. L., Peri, T., & Pitman, R. K. (2000). De novo conditioning in trauma-exposed individuals with and without posttraumatic stress disorder. Journal of Abnormal Psychology, 109(2), 290–298.CrossRefGoogle ScholarPubMed
Pavlov, I. (1927).Conditioned reflexes. London: Oxford University Press.Google Scholar
Paxinos, G., & Watson, C. (1998). The rat brain in stereotaxic coordinates. San Diego: Academic Press.Google Scholar
Peri, T., Ben-Shakhar, G., Orr, S. P., & Shalev, A. Y. (2000). Psychophysiologic assessment of aversive conditioning in posttraumatic stress disorder. Biological Psychiatry, 47(6), 512–519.CrossRefGoogle ScholarPubMed
Phelps, E. A., Delgado, M. R., Nearing, K. I., & LeDoux, J. E. (2004). Extinction learning in humans: Role of the amygdala and vmPFC. Neuron, 43(6), 897–905.CrossRefGoogle ScholarPubMed
Quirk, G. J. (2002). Memory for extinction of conditioned fear is long-lasting and persists following spontaneous recovery. Learning & Memory, 9(6), 402–407.CrossRefGoogle ScholarPubMed
Quirk, G. J., Likhtik, E., Pelletier, J. G., & Pare, D. (2003). Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. Journal of Neuroscience, 23(25), 8800–8807.CrossRefGoogle ScholarPubMed
Quirk, G. J., Russo, G. K., Barron, J. L., & Lebron, K. (2000). The role of ventromedial prefrontal cortex in the recovery of extinguished fear. Journal of Neuroscience, 20(16), 6225–6231.CrossRefGoogle ScholarPubMed
Rauch, S. L., Milad, M. R., Orr, S. P., Quinn, B. T., Fischl, B., & Pitman, , , R. K. (2005).Orbitofrontal thickness, retention of fear extinction, and extraversion. Neuroreport, 16(17), 1909–1912.CrossRefGoogle ScholarPubMed
Rauch, S. L., Shin, L. M., Segal, E., Pitman, R. K., Carson, M. A., McMullin, K. et al. (2003). Selectively reduced regional cortical volumes in post-traumatic stress disorder. Neuroreport, 14(7), 913–916.CrossRefGoogle ScholarPubMed
Rescorla, R. A., & Heth, C. D. (1975). Reinstatement of fear to an extinguished conditioned stimulus. Journal of Experimental Psychology: Animal Behavior Processes, 1(1), 88–96.Google Scholar
Ressler, K. J., Paschall, G., Zhou, X. L., & Davis, M. (2002). Regulation of synaptic plasticity genes during consolidation of fear conditioning. Journal of Neuroscience, 22(18), 7892–7902.CrossRefGoogle ScholarPubMed
Ressler, K. J., Rothbaum, B. O., Tannenbaum, L., Anderson, P., Graap, K., & Zimand, E. (2004). Cognitive enhancers as adjuncts to psychotherapy: Use of d-cycloserine in phobic individuals to facilitate extinction of fear. Archives of General Psychiatry, 61(11), 1136–1144.CrossRefGoogle Scholar
Rosenkranz, J. A., Moore, H., & Grace, A. A. (2003). The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli. Journal of Neuroscience, 23(35), 11054–11064.CrossRefGoogle ScholarPubMed
Rothbaum, B. O., Kozak, M. J., Foa, E. B., & Whitaker, D. J. (2001). Posttraumatic stress disorder in rape victims: Autonomic habituation to auditory stimuli. Journal of Trauma: Injury, Infection and Critical Care, 14(2), 283–293.Google ScholarPubMed
Rothbaum, B. O., & Schwartz, A. C. (2002). Exposure therapy for posttraumatic stress disorder. American Journal of Psychiatry, 56(1), 59–75.Google ScholarPubMed
Royer, S., Martina, M., & Pare, D. (1999).An inhibitory interface gates impulse traffic between the input and output stations of the amygdala. Journal of Neuroscience, 19(23), 10575–10583.CrossRefGoogle ScholarPubMed
Royer, S., & Pare, D. (2002). Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience, 115(2), 455–462.CrossRefGoogle ScholarPubMed
Santini, E., Ge, H., Ren, K., Peña de Ortiz, S., & Quirk, G. J. (2004).Consolidation of fear extinction requires protein synthesis in the medial prefrontal cortex. Journal of Neuroscience, 24(25), 5704–5710.CrossRefGoogle ScholarPubMed
Santini, E., Muller, R. U., & Quirk, G. J. (2001). Consolidation of extinction learning involves transfer from N-methyl d-aspartate (receptors)-independent to N-methyl d-aspartate (receptors)-dependent memory. Journal of Neuroscience, 21(22), 9009–9017.CrossRefGoogle ScholarPubMed
Shin, L. M., McNally, R. J., Kosslyn, S. M., Thompson, W. L., Rauch, S. L., Alpert, N. M. et al. (1997). A positron emission tomographic study of symptom provocation in PTSD. Annals of the New York Academy of Sciences, 821, 521–523.CrossRefGoogle ScholarPubMed
Shin, L. M., McNally, R. J., Kosslyn, S. M., Thompson, W. L., Rauch, S. L., Alpert, N. M. et al. (1999). Regional cerebral blood flow during script-driven imagery in childhood sexual abuse-related PTSD: A positron emission tomography investigation. American Journal of Psychiatry, 156(4), 575–584.Google Scholar
Shin, L. M., Orr, S. P., Carson, M. A., Rauch, S. L., Macklin, M. L., Lasko, N. B. et al. (2004). Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Archives of General Psychiatry, 61(2), 168–176.CrossRefGoogle ScholarPubMed
Shin, L. M., Whalen, P. J., Pitman, R. K., Bush, G., Macklin, M. L., Lasko, N. B. et al. (2001). An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biological Psychiatry, 50, 932–942.CrossRefGoogle ScholarPubMed
Shumyatsky, G. P., Tsvetkov, E., Malleret, G., Vronskaya, S., Hatton, M., Hampton, L. et al. (2002). Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Cell, 111(6), 905–918.CrossRefGoogle ScholarPubMed
Silva, A. J., Kogan, J. H., Frankland, P. W., & Kida, S. (1998). cAMP-response-element–binding protein and memory. Annual Review of Neuroscience, 21, 127–148.CrossRefGoogle ScholarPubMed
Vermetten, E., & Bremner, J. D. (2002). Circuits and systems in stress, I: Preclinical studies. Depression and Anxiety, 15(3), 126–147.CrossRefGoogle ScholarPubMed
Vertes, R. P. (2004). Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse, 51(1), 32–58.CrossRefGoogle ScholarPubMed
Vianna, M. R., Szapiro, G., McGaugh, J. L., Medina, J. H., & Izquierdo, I. (2001). Retrieval of memory for fear-motivated training initiates extinction requiring protein synthesis in the rat hippocampus. Proceedings of the National Academy of Science USA, 98(21), 12251–12254.CrossRefGoogle ScholarPubMed
Wager, T. D., Rilling, J. K., Smith, E. E., Sokolik, A., Casey, K. L., Davidson, R. J. et al. (2004). Placebo-induced changes in fMRI in the anticipation and experience of pain. Science, 303(5661), 1162–1167.CrossRefGoogle Scholar
Wittenberg, G., & Tsien, J. (2002). An emerging molecular and cellular framework for memory processing by the hipppocampus. Trends in Neurosciences, 25, 501.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Learning Not to Fear: A Neural Systems Approach
    • By Gregory J. Quirk, Professor Department of Physiology, Ponce School of Medicine, Puerto Rico, Mohammed R. Milad, Instructor Department of Psychiatry, Harvard Medical School; Assistant in Research Department of Psychiatry, Massachusetts General Hospital, Edwin Santini, Postdoctoral Fellow Department of Pharmacology, Ponce School of Medicine, Puerto Rico, Kelimer Lebrón, Postdoctoral Fellow Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
  • Edited by Laurence J. Kirmayer, McGill University, Montréal, Robert Lemelson, University of California, Los Angeles, Mark Barad, University of California, Los Angeles
  • Book: Understanding Trauma
  • Online publication: 27 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511500008.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Learning Not to Fear: A Neural Systems Approach
    • By Gregory J. Quirk, Professor Department of Physiology, Ponce School of Medicine, Puerto Rico, Mohammed R. Milad, Instructor Department of Psychiatry, Harvard Medical School; Assistant in Research Department of Psychiatry, Massachusetts General Hospital, Edwin Santini, Postdoctoral Fellow Department of Pharmacology, Ponce School of Medicine, Puerto Rico, Kelimer Lebrón, Postdoctoral Fellow Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
  • Edited by Laurence J. Kirmayer, McGill University, Montréal, Robert Lemelson, University of California, Los Angeles, Mark Barad, University of California, Los Angeles
  • Book: Understanding Trauma
  • Online publication: 27 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511500008.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Learning Not to Fear: A Neural Systems Approach
    • By Gregory J. Quirk, Professor Department of Physiology, Ponce School of Medicine, Puerto Rico, Mohammed R. Milad, Instructor Department of Psychiatry, Harvard Medical School; Assistant in Research Department of Psychiatry, Massachusetts General Hospital, Edwin Santini, Postdoctoral Fellow Department of Pharmacology, Ponce School of Medicine, Puerto Rico, Kelimer Lebrón, Postdoctoral Fellow Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA
  • Edited by Laurence J. Kirmayer, McGill University, Montréal, Robert Lemelson, University of California, Los Angeles, Mark Barad, University of California, Los Angeles
  • Book: Understanding Trauma
  • Online publication: 27 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511500008.007
Available formats
×