Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T07:56:02.768Z Has data issue: false hasContentIssue false

3 - Social Deprivation, Social–Emotional Behavior, and the Plasticity of Dopamine Function

Published online by Cambridge University Press:  14 July 2009

Paul L. Gendreau
Affiliation:
University of Montréal
Mark H. Lewis
Affiliation:
University of Florida
David M. Stoff
Affiliation:
National Institute of Mental Health, Bethesda, Maryland
Elizabeth J. Susman
Affiliation:
Pennsylvania State University
Get access

Summary

BRIAN PLASTICITY AND SOCIAL DEVELOPMENT

The notion of plasticity in relation to biological and behavioral development is not a new one. Even when very little was known about brain structure and function and long before the advent of modern molecular and neuroanatomical techniques, scientists recognized that the brain had the capacity to adapt and change in response to environmental input. Already in 1892, William James stressed the importance of brain plasticity in the organization of habits:

Plasticity, then, in the wide sense of the word, means the possession of a structure weak enough to yield to an influence, but strong enough not to yield all at once. Each relatively stable phase of equilibrium in such a structure is marked by what we call a new set of habits. Organic matter, especially nervous tissue, seems endowed with a very extraordinary degree of plasticity of this sort; so that we may without hesitation lay down as our first proposition the following: that the phenomena of habit in living beings are due to plasticity of the organic materials of which their bodies are composed.

(p. 2, italic original (James, 1892)

James's intuition was confirmed in the 1960s when a group of scientists provided the first empirical evidence of environmentally induced alterations in brain chemistry and structure (Diamond, Krech, & Rozenzweig,1964; Krech, Rozenzweig, & Bennett, 1960; Rozenzweig, Krech, Bennett, & Diamond, 1962). Importantly, it was shown that these neurobiological alterations were associated with enhanced behavioral and particularly cognitive functions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, S. H., Stinus, L., Moal, M., & Cador, M. (1995). Social deprivation enhances the vulnerability of male Wistar rats to stressor- and amphetamine-induced behavioral sensitization. Psychopharmacology, 117, 116–124CrossRefGoogle ScholarPubMed
Andersen, S. L., Rutstein, M., Benzo, J. M., Hostetter, J. C., & Teicher, M. H. (1997). Sex differences in dopamine receptor overproduction and elimination. Neuroreport, 8, 1495–1498CrossRefGoogle ScholarPubMed
Andersen, S. L., & Teicher, M. H. (2000). Sex differences in dopamine receptors and their relevance to ADHD. Neuroscience and Biobehavioral Reviews, 24, 137–141CrossRefGoogle ScholarPubMed
Anderson, B. J., Gatley, S. J., Rapp, D. N., Coburn-Litvak, P. S., & Volkow, N. D. (2000). The ratio of striatal D1 to muscarinic receptors changes in aging rats housed in an enriched environment. Brain Research, 872, 262–265CrossRefGoogle Scholar
Baggio, G., & Ferrari, F. (1980). Role of brain dopaminergic mechanisms in rodent aggressive behavior: influence of (+/−)N-n-propyl-norapomorph ine on three experimental models. Psychopharmacology, 70, 63–68CrossRefGoogle Scholar
Bakwin, H. (1949). Psychologic aspects of pediatrics. Journal of Pediatrics, 35, 512–521CrossRefGoogle Scholar
Bardo, M. T., & Hammer, R. P. Jr. (1991). Autoradiographic localization of dopamine D1 and D2 receptors in rat nucleus accumbens: Resistance to differential rearing conditions. Neuroscience, 45, 281–290CrossRefGoogle ScholarPubMed
Bean, G., & Lee, T. (1991). Social isolation and cohabitation with haloperidol-treated partners: Effect on density of striatal dopamine D2 receptors in the developing rat brain. Psychiatry Research, 36, 307–317CrossRefGoogle ScholarPubMed
Bekoff, M. (1976). The social deprivation paradigm: Who's being deprived of what?Developmental Psychobiology, 9, 499–500CrossRefGoogle Scholar
Bernstein, S., & Mason, W. A. (1962). The effects of age and stimulus conditions of the emotional responses of Rhesus monkeys: Responses to complex stimuli. Journal of Genetic Psychology, 101, 279–298CrossRefGoogle ScholarPubMed
Berton, O., Ramos, A., Chaouloff, F., & Mormede, P. (1997). Behavioral reactivity to social and nonsocial stimulations: A multivariate analysis of six inbred rat strains. Behavior Genetics, 27, 155–166CrossRefGoogle ScholarPubMed
Blanc, G., Herve, D., Simon, H., Lisoprawski, A., Glowinski, J., & Tassin, J. P. (1980). Response to stress of mesocortico-frontal dopaminergic neurones in rats after long-term isolation. Nature, 284, 265–267CrossRefGoogle ScholarPubMed
Blaschko, H. (1957). Metabolism and storage of biogenic amines. Experientia, 13, 12CrossRefGoogle ScholarPubMed
Bornstein, M. H. (1989). Sensitive periods in development: Structural characteristics and causal interpretations. Psychological Bulletin, 105, 179–197CrossRefGoogle ScholarPubMed
Bowlby, J. (1940). The influence of early environment in the development of neurosis and neurotic character. International Journal of Psycho-Analysis, 21, 154–178Google Scholar
Bowling, S. L., & Bardo, M. T. (1994). Locomotor and rewarding effects of amphetamine in enriched, social, and isolate reared rats. Pharmacology, Biochemistry and Behavior, 48, 459–464CrossRefGoogle ScholarPubMed
Brainard, M. S., & Knudsen, E. I. (1998). Sensitive periods for visual calibration of the auditory space map in the barn owl optic tectum. Journal of Neuroscience, 18, 3929–3942CrossRefGoogle ScholarPubMed
Cairns, R. B. (1972). Fighting and punishment from a developmental perspective. In Cole, J. K. & Jensen, D. D. (Eds.), Nebraska Symposium on motivation (pp. 59–124). Lincoln: University of Nebraska PressGoogle Scholar
Cairns, R. B. (1979). Social development: The origins and plasticity of interchanges. San Franscisco: FreemanGoogle Scholar
Cairns, R. B., Gariépy, J. L., & Hood, K. E. (1990). Development, microevolution, and social behavior. Psychological Review, 97, 49–65CrossRefGoogle ScholarPubMed
Cairns, R. B., Hood, K. E., & Midlam, J. (1985). On fighting in mice: Is there a sensitive period for isolation effects?Animal Behavior, 33, 166–180CrossRefGoogle Scholar
Cairns, R. B., MacCombie, D. J., & Hood, K. E. (1983). A developmental–genetic analysis of aggressive behavior in mice: I. Behavioral outcomes. Journal of Comparative Psychology, 97, 69–89CrossRefGoogle ScholarPubMed
Carlsson, A., Lindqvist, M., Magnusson, T., & Waldeck, B. (1958). On the presence of 3-hydroxytyramine in brain. Science, 127, 471CrossRefGoogle ScholarPubMed
Carmichael, L. (1925). Heredity and environment: Are they antithetical?Journal of Abnormal and Social Psychology, 20, 245–260CrossRefGoogle Scholar
Charpier, S., & Deniau, J. M. (1997). In vivo activity-dependent plasticity at cortico-striatal connections: Evidence for physiological long-term potentiation. Proceedings of the National Academy of Sciences, USA, 94, 7036–7040CrossRefGoogle ScholarPubMed
Chesselet, M. F., Butler, A. K., Napieralski, J. A., Morehouse, W. V., Szele, F. G., & Uryu, K. (2000). Anatomical plasticity in the striatum during development and after lesions in the adult rat. In Baudry, M., Davis, J. L., & Thompson, R. F. (Eds.), Advances in synaptic plasticity (pp. 167–195). Cambridge,MA: MIT PressGoogle Scholar
Craig, W. (1914). Males doves reared in isolation. Journal of Animal Behavior, 4, 121–133CrossRefGoogle Scholar
Crair, M. C., Gillespie, D. C., & Stryker, M. P. (1998). The role of visual experience in the development of columns in cat visual cortex. Science, 279, 566–570CrossRefGoogle ScholarPubMed
Crawford, C. A., Rowlett, J. K., McDougall, S. A., & Bardo, M. T. (1994). Age-dependent differences in the rate of recovery of striatal dopamine D1 and D2 receptors after inactivation with EEDQ. European Journal of Pharmacology, 252, 225–231CrossRefGoogle ScholarPubMed
Crespi, F., Wright, I. K., & Mobius, C. (1992). Isolation rearing of rats alters release of 5-hydroxytryptamine and dopamine in the frontal cortex: An in vivo electrochemical study. Experimental Brain Research, 88, 495–501CrossRefGoogle Scholar
Cynader, M., Berman, N., & Hein, A. (1976). Recovery of function in cat visual cortex following prolonged deprivation. Experimental Brain Research, 25, 139–156CrossRefGoogle ScholarPubMed
Diamond, M. C., Krech, D., & Rozenzweig, M. R. (1964). The effects of an enriched environment on the histology of the rat cerebral cortex. Journal of Comparative Neurology, 123, 111–120CrossRefGoogle ScholarPubMed
Einon, D. F., Morgan, M. J., & Kibbler, C. C. (1978). Brief periods of socialization and later behavior in the rat. Developmental Psychobiology, 11, 213–225CrossRefGoogle ScholarPubMed
Finger, S., & Wolf, C. (1988). The ‘Kennard effect’ before Kennard. The early history of age and brain lesions. Archives of Neurology, 45, 1136–1142CrossRefGoogle ScholarPubMed
Foley, J. P. (1934). First year development of a rhesus monkey (Macaca mulatta) reared in isolation. Journal of Genetic Psychology, 45, 39–105Google Scholar
Franklin, S. R., & Tang, A. H. (1995). Dopamine agonists facilitate footshock-elicited locomotion in rats, and suppress level-press responding for food. Psychopharmacology, 121, 480–484CrossRefGoogle Scholar
Fulford, A. J., & Marsden, C. A. (1998). Effect of isolation-rearing on conditioned dopamine release in vivo in the nucleus accumbens of the rat. Journal of Neurochemistry, 70, 384–390CrossRefGoogle ScholarPubMed
Fuller, J. L., & Clark, L. D. (1966). Genetic and treatment factors modifying the postisolation syndrome in dogs. Journal of Comparative and Physiological Psychology, 61, 251–257CrossRefGoogle ScholarPubMed
Gariépy, J.-L. (1995). The mediation of aggressive behavior in mice: A discussion of approach/withdrawal processes in social adaptations. In Hood, K. E., Greenberg, G., & Tobach, E. (Eds.), Behavioral development: Concepts of approach/withdrawal and integrative levels (pp. 231–285). New York: Garland PublishingGoogle Scholar
Gariépy, J. L., Gendreau, P. L., Cairns, R. B., & Lewis, M. H. (1998). D1 dopamine receptors and the reversal of isolation-induced behaviors in mice. Behavioural Brain Research, 95, 103–111CrossRefGoogle ScholarPubMed
Gariépy, J. L., Gendreau, P. L., Mailman, R. B., Tancer, M., & Lewis, M. H. (1995). Rearing conditions alter social reactivity and D1 dopamine receptors in high- and low-aggressive mice. Pharmacology, Biochemistry and Behavior, 51, 767–773CrossRefGoogle ScholarPubMed
Gariépy, J. L., Hood, K. E., & Cairns, R. B. (1988). A developmental–genetic analysis of aggressive behavior in mice (Mus musculus): III. Behavioral mediation by heightened reactivity or immobility?Journal of Comparative Psychology, 102, 392–399CrossRefGoogle ScholarPubMed
Gariépy, J.-L., Lewis, M. H., & Cairns, R. B. (1996). Genes, neurobiology, and aggression: Time frames and functions of social behaviors in adaptation. In Stoff, M. & Cairns, R. B. (Eds.), Aggression and violence: Neurobiological, biosocial and genetic perspectives (pp. 41–63). New York: Lawrence ErlbaumGoogle Scholar
Gendreau, P. L., Gariépy, J. L., Petitto, J. M., & Lewis, M. H. (1997a). D1 dopamine receptor mediation of social and nonsocial emotional reactivity in mice: Effects of housing and strain difference in motor activity. Behavioral Neuroscience, 111, 424–434CrossRefGoogle Scholar
Gendreau, P. L., Petitto, J. M., Gariépy, J. L., & Lewis, M. H. (1998). D2-like dopamine receptor mediation of social–emotional reactivity in a mouse model of anxiety: Strain and experience effects. Neuropsychopharmacology, 18, 210–221CrossRefGoogle Scholar
Gendreau, P. L., Petitto, J. M., Petrova, A., Gariépy, J., & Lewis, M. H. (2000). D(3) and D(2) dopamine receptor agonists differentially modulate isolation-induced social-emotional reactivity in mice. Behavioural Brain Research, 114, 107–117CrossRefGoogle Scholar
Gendreau, P. L., Petitto, J. M., Schnauss, R., Frantz, K. J., Hartesveldt, C., Gariépy, J. L. (1997b). Effects of the putative dopamine D3 receptor antagonist PNU 99194A on motor behavior and emotional reactivity in C57BL/6J mice. European Journal of Pharmacology, 337, 147–155CrossRefGoogle Scholar
Gluck, J. P., & Sackett, G. P. (1974). Frustration and self-aggression in social isolate rhesus monkeys. Journal of Adolescence, 83, 331–334Google ScholarPubMed
Goosen, C. (1981). Abnormal behavior patterns in rhesus monkeys: Symptoms of mental disease. Biological Psychiatry, 16, 697–716Google ScholarPubMed
Greenough, W. T. (1988). The turned-on brain: Developmental and adult responses to the demands of information storage. In Easter, S. C., Barald, K. F., & Carlson, B. M. (Eds.), From message to mind: Directions in developmental neurobiology (pp. 288–302). Sunderland, MA: Sinauer AssociatesGoogle Scholar
Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58, 539–559CrossRefGoogle ScholarPubMed
Guisado, E., Fernandez-Tome, P., Garzon, J., & Del Rio, J. (1980). Increased dopamine receptor binding in the striatum of rats after long-term isolation. European Journal of Pharmacology, 65, 463–464CrossRefGoogle ScholarPubMed
Hall, F. S. (1998). Social deprivation of neonatal, adolescent, and adult rats has distinct neurochemical and behavioral consequences. Critical Review in Neurobiology, 12, 129–162CrossRefGoogle ScholarPubMed
Hall, F. S., Fong, G. W., Ghaed, S., & Pert, A. (2001). Locomotor-stimulating effects of indirect dopamine agonists are attenuated in Fawn hooded rats independent of postweaning social experience. Pharmacology, Biochemistry and Behavior, 69, 519–526CrossRefGoogle ScholarPubMed
Hall, F. S., Wilkinson, L. S., Humby, T., Inglis, W., Kendall, D. A., Marsden, C. A. (1998). Isolation rearing in rats: Pre- and postsynaptic changes in striatal dopaminergic systems. Pharmacology, Biochemistry and Behavior, 59, 859–872CrossRefGoogle ScholarPubMed
Hall, F. S., Wilkinson, L. S., Humby, T., & Robbins, T. W. (1999). Maternal deprivation of neonatal rats produces enduring changes in dopamine function. Synapse, 32, 37–433.0.CO;2-4>CrossRefGoogle ScholarPubMed
Harlow, H. F., Dodsworth, R. O., & Harlow, M. K. (1965). Total social isolation in monkeys. Proceedings of the National Academy of Sciences, USA, 54, 90–97CrossRefGoogle ScholarPubMed
Harlow, H. F., & Suomi, S. J. (1971). Social recovery by isolation-reared monkeys. Proceedings of the National Academy of Sciences, USA, 68, 1534–1538CrossRefGoogle ScholarPubMed
Harlow, H. F., & Suomi, S. J. (1974). Induced depression in monkeys. Behavioral Biology, 12, 273–296CrossRefGoogle ScholarPubMed
Harvey, D. C., Lacan, G., Tanious, S. P., & Melega, W. P. (2000). Recovery from methamphetamine induced long-term nigrostriatal dopaminergic deficits without substantia nigra cell loss. Brain Research, 871, 259–270CrossRefGoogle ScholarPubMed
Hatch, A. M., Wiberg, G. S., Zawidzka, Z., Cann, M., Airth, J. M., & Grice, H. C. (1965). Isolation syndrome in the rat. Toxicology and Applied Pharmacology, 7, 737–745CrossRefGoogle ScholarPubMed
Heidbreder, C. A., Weiss, I. C., Domeney, A. M., Pryce, C., Homberg, J., Hedou, G. (2000). Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrome. Neuroscience, 100, 749–768CrossRefGoogle ScholarPubMed
Hess, E. J., Albers, L. J., Le, H., & Creese, I. (1986). Effects of chronic SCH23390 treatment on the biochemical and behavioral properties of D1 and D2 dopamine receptors: Potentiated behavioral responses to a D2 dopamine agonist after selective D1 dopamine receptor upregulation. Journal of Pharmacology and Experimental Therapeutics, 238, 846–854Google ScholarPubMed
Hinde, R. A., & Spencer-Booth, Y. (1971). Effects of brief separation from mother on rhesus monkeys. Science, 173, 111–118CrossRefGoogle ScholarPubMed
Hofer, M. A. (1975). Survival and recovery of physiologic functions after early maternal separation in rats. Physiology and Behavior, 15, 475–480CrossRefGoogle ScholarPubMed
Hubel, D. H., & Wiesel, T. N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. Journal of Physiology, 206, 419–436CrossRefGoogle ScholarPubMed
Hyttel, J. (1989). Parallel decrease in the density of dopamine D1 and D2 receptors in corpus striatum of rats from 3 to 25 months of age. Pharmacology and Toxicology, 64, 55–57CrossRefGoogle ScholarPubMed
James, W. (1892). In Allport, G. (Ed.), Psychology: The briefer course. New York: Harper & BrothersGoogle Scholar
Jones, G. H., Hernandez, T. D., Kendall, D. A., Marsden, C. A., & Robbins, T. W. (1992). Dopaminergic and serotonergic function following isolation rearing in rats: Study of behavioural responses and postmortem and in vivo neurochemistry. Pharmacology, Biochemistry and Behavior, 43, 17–35CrossRefGoogle ScholarPubMed
Jones, G. H., Marsden, C. A., & Robbins, T. W. (1990). Increased sensitivity to amphetamine and reward-related stimuli following social isolation in rats: Possible disruption of dopamine-dependent mechanisms of the nucleus accumbens. Psychopharmacology, 102, 364–372CrossRefGoogle ScholarPubMed
Kaufman, I. C., & Rosenblum, L. A. (1967). Depression in infant monkeys separated from their mothers. Science, 155, 1030–1031CrossRefGoogle ScholarPubMed
Kehoe, P., Shoemaker, W. J., Arons, C., Triano, L., & Suresh, G. (1998). Repeated isolation stress in the neonatal rat: Relation to brain dopamine systems in the 10-day-old rat. Behavioral Neuroscience, 112, 1466–1474CrossRefGoogle ScholarPubMed
Kim, D. S., Szczypka, M. S., & Palmiter, R. D. (2000). Dopamine-deficient mice are hypersensitive to dopamine receptor agonists. Journal of Neuroscience, 20, 4405–4413CrossRefGoogle ScholarPubMed
Kolb, B., Gibb, R., & Gorny, G. (2000). Cortical plasticity and the development of behavior after early frontal cortical injury. Developmental Neuropsychology, 18, 423–444CrossRefGoogle ScholarPubMed
Kral, A., Hartmann, R., Tillein, J., Heid, S., & Klinke, R. (2001). Delayed maturation and sensitive periods in the auditory cortex. Audiology and Neurootology, 6, 346–362CrossRefGoogle ScholarPubMed
Krech, D., Rozenzweig, M. R., & Bennett, E. L. (1960). Effects of environmental complexity and training on brain chemistry. Journal of Comparative Physiology and Psychology, 53, 509–519CrossRefGoogle ScholarPubMed
Krsiak, M. (1975). Timid singly-housed mice: Their value in prediction of psychotropic activity of drugs. British Journal of Pharmacology, 55, 141–150CrossRefGoogle ScholarPubMed
Lagerspetz, K. Y., Tirri, R., & Lagerspetz, K. M. (1968). Neurochemical and endocrinological studies of mice selectively bred for aggressiveness. Scandinavian Journal of Psychology, 9, 157–160CrossRefGoogle ScholarPubMed
LaHoste, G. J., & Marshall, J. F. (1992). Dopamine supersensitivity and D1/D2 synergism are unrelated to changes in striatal receptor density. Synapse, 12, 14–26CrossRefGoogle ScholarPubMed
Moal, M., & Simon, H. (1991). Mesocorticolimbic dopaminergic network: Functional and regulatory roles. Physiological Reviews, 71, 155–234CrossRefGoogle ScholarPubMed
Lewis, M. H., Gariépy, J. L., Gendreau, P. L., Nichols, D. E., & Mailman, R. B. (1994). Social reactivity and D1 dopamine receptors: Studies in mice selectively bred for high and low levels of aggression. Neuropsychopharmacology, 10, 115–122CrossRefGoogle ScholarPubMed
Lewis, M. H., Gluck, J. P., Beauchamp, A. J., Keresztury, M. F., & Mailman, R. B. (1990). Long-term effects of early social isolation in Macaca mulatta: Changes in dopamine receptor function following apomorphine challenge. Brain Research, 513, 67–73CrossRefGoogle ScholarPubMed
Liu, D., Diorio, J., Day, J. C., Francis, D. D., & Meaney, M. J. (2000). Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nature Neuroscience, 3, 799–806CrossRefGoogle ScholarPubMed
Lorenz, K. (1981). The foundations of ethology. New York: Simon and SchusterCrossRefGoogle Scholar
Martin, L. J., Spicer, D. M., Lewis, M. H., Gluck, J. P., & Cork, L. C. (1991). Social deprivation of infant rhesus monkeys alters the chemoarchitecture of the brain: I. Subcortical regions. Journal of Neuroscience, 11, 3344–3358CrossRefGoogle ScholarPubMed
Mason, W. A., & Berkson, G. (1975). Effects of maternal mobility on the development of rocking and other behaviors in rhesus monkeys: A study with artificial mothers. Developmental Psychobiology, 8, 197–211CrossRefGoogle ScholarPubMed
Mason, W. A., & Sponholz, R. R. (1963). Behavior of rhesus monkeys raised in isolation. Journal of Psychiatric Research, 1, 299–306CrossRefGoogle ScholarPubMed
Matthews, K., Dalley, J. W., Matthews, C., Tsai, T. H., & Robbins, T. W. (2001). Periodic maternal separation of neonatal rats produces region- and gender-specific effects on biogenic amine content in postmortem adult brain. Synapse, 40, 1–103.0.CO;2-E>CrossRefGoogle ScholarPubMed
McCulloch, T. L., & Haselrud, G. M. (1939). Development of an infant chimpanzee during her first year. Journal of Comparative Psychology, 28, 437–445CrossRefGoogle Scholar
McMillen, B. A., DaVanzo, E. A., Song, A. H., Scott, S. M., & Rodriguez, M. E. (1989). Effects of classical and atypical antipsychotic drugs on isolation-induced aggression in male mice. European Journal of Pharmacology, 160, 149–153CrossRefGoogle ScholarPubMed
Meaney, M. J., Brake, W., & Gratton, A. (2002). Environmental regulation of the development of mesolimbic dopamine systems: A neurobiological mechanism for vulnerability to drug abuse?Psychoneuroendocrinology, 27, 127–138CrossRefGoogle ScholarPubMed
Meisami, E., & Mousavi, R. (1981). Lasting effects of early olfactory deprivation on the growth, DNA, RNA and protein content, and Na-K-ATPase and AchE activity of the rat olfactory bulb. Brain Research, 254, 217–229CrossRefGoogle Scholar
Miczek, K. A., DeBold, J. F., & Erp, A. M. (1994). Neuropharmacological characteristics of individual differences in alcohol effects on aggression in rodents and primates. Behavioral Pharmacology, 5, 407–421CrossRefGoogle ScholarPubMed
Miura, H., Qiao, H., & Ohta, T. (2002). Attenuating effects of the isolated rearing condition on increased brain serotonin and dopamine turnover elicited by novelty stress. Brain Research, 926, 10–17CrossRefGoogle ScholarPubMed
Morelli, M., Mennini, T., Cagnotto, A., Toffano, G., & Di Chiara, G. (1990). Quantitative autoradiographical analysis of the age-related modulation of central dopamine D1 and D2 receptors. Neuroscience, 36, 403–410CrossRefGoogle ScholarPubMed
Murrin, L. C., & Zeng, W. Y. (1990). Ontogeny of dopamine D1 receptors in rat forebrain: A quantitative autoradiographic study. Brain Research. Developmental Brain Research, 57, 7–13CrossRefGoogle ScholarPubMed
Myslivecek, J., & Hassmannova, J. (1979). Ontogeny of active avoidance in the rat: Learning and memory. Developmental Psychobiology, 12, 169–186CrossRefGoogle ScholarPubMed
O'Connor, T. G., Rutter, M., Beckett, C., Keaveney, L., & Kreppner, J. M. (2000). The effects of global severe privation on cognitive competence: Extension and longitudinal follow-up. English and Romanian Adoptees Study Team. Child Development, 71, 376–390CrossRefGoogle ScholarPubMed
Oehler, J., Jahkel, M., & Schmidt, J. (1987). Neuronal transmitter sensitivity after social isolation in rats. Physiology and Behavior, 41, 187–191CrossRefGoogle ScholarPubMed
Pellis, S. M., & Pasztor, T. J. (1999). The developmental onset of a rudimentary form of play fighting in C57 mice. Developmental Psychobiology, 34, 175–1823.0.CO;2-#>CrossRefGoogle ScholarPubMed
Phillips, G. D., Howes, S. R., Whitelaw, R. B., Wilkinson, L. S., Robbins, T. W., & Everitt, B. J. (1994). Isolation rearing enhances the locomotor response to cocaine and a novel environment, but impairs the intravenous self-administration of cocaine. Psychopharmacology, 115, 407–418CrossRefGoogle Scholar
Rice, D., & Barone, S Jr (2000). Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environmental Health Perspectives, 108 (Suppl 3), 511–533CrossRefGoogle ScholarPubMed
Rilke, O., Jahkel, M., & Oehler, J. (1998). Dopaminergic parameters during social isolation in low- and high-active mice. Pharmacology, Biochemistry and Behavior, 60, 499–505CrossRefGoogle ScholarPubMed
Rilke, O., May, T., Oehler, J., & Wolffgramm, J. (1995). Influences of housing conditions and ethanol intake on binding characteristics of D2, 5-HT1A, and benzodiazepine receptors of rats. Pharmacology, Biochemistry and Behavior, 52, 23–28CrossRefGoogle ScholarPubMed
Robbins, T. W., Jones, G. H., & Wilkinson, L. S. (1996). Behavioural and neurochemical effects of early social deprivation in the rat. Journal of Psychopharmacology, 10, 39–47CrossRefGoogle ScholarPubMed
Rodgers, R. J., & Cole, J. C. (1993). Influence of social isolation, gender, strain, and prior novelty on plus-maze behaviour in mice. Physiology and Behavior, 54, 729–736CrossRefGoogle ScholarPubMed
Rots, N. Y., Jong, J., Workel, J. O., Levine, S., Cools, A. R., & Kloet, E. R. (1996). Neonatal maternally deprived rats have as adults elevated basal pituitary–adrenal activity and enhanced susceptibility to apomorphine. Journal of Neuroendocrinology, 8, 501–506CrossRefGoogle ScholarPubMed
Rozenzweig, M. R., Krech, D., Bennett, E. L., & Diamond, M. C. (1962). Effects of enviromental compexity and training on brain chemistry and anatomy. Journal of Comparative Physiology and Psychology, 55, 429–437CrossRefGoogle Scholar
Salzen, E. A., & Meyer, C. C. (1967). Imprinting: Reversal of a preference established during the critical period. Nature, 215, 785–786CrossRefGoogle ScholarPubMed
Sanchez, M. M., Ladd, C. O., & Plotsky, P. M. (2001). Early adverse experience as a developmental risk factor for later psychopathology: Evidence from rodent and primate models. Development and Psychopathology, 13, 419–449CrossRefGoogle ScholarPubMed
Scott, J. P. (1966). Agonistic behavior of mice and rats: A review. American Zoology, 6, 683–701CrossRefGoogle ScholarPubMed
Seeman, P., Bzowej, N. H., Guan, H. C., Bergeron, C., Becker, L. E., Reynolds, G. P. (1987). Human brain dopamine receptors in children and aging adults. Synapse, 1, 399–404CrossRefGoogle ScholarPubMed
Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L., & Schwartz, J. C. (1990). Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature, 347, 146–151CrossRefGoogle ScholarPubMed
Spitz, R. A., (1945). Hospitalism: An inquiry into the genesis of psychiatric conditions in early childhood. Psychoanalytic Study of the Child, 1, 53–74CrossRefGoogle ScholarPubMed
Spitz, R. A., & Wolf, K. M. (1946). Anaclitic depression: An inquiry into the genesis of psychiatric conditions in early childhood, II. Psychoanalytic Study of the Child, 2, 313–342CrossRefGoogle Scholar
Stern, E. A., Maravall, M., & Svoboda, K. (2001). Rapid development and plasticity of layer 2/3 maps in rat barrel cortex in vivo. Neuron, 31, 305–315CrossRefGoogle ScholarPubMed
Stone, C. P. (1926). The initial copulatory response of female rats reared in isolation from the age of 20 days to age of puberty. Journal of Comparative Psychology, 6, 78–83CrossRefGoogle Scholar
Sugahara, M., & Shiraishi, H. (1998). Synaptic density of the prefrontal cortex regulated by dopamine instead of serotonin in rats. Brain Research, 814, 143–156CrossRefGoogle ScholarPubMed
Suomi, S. J., & Harlow, H. F. (1972). Social rehabilitation of isolate-reared monkeys. Developmental Psychology, 6, 487–496CrossRefGoogle Scholar
Tancer, M.-E, Gariépy, J.-L., Mayleben, M. A., Petitto, J. M., & Lewis, M. H. (1992). NC100 mice: A putative animal model for social phobia. Washington, DC: Society of Biological PsychiatryGoogle Scholar
Tarazi, F. I., & Baldessarini, R. J. (2000). Comparative postnatal development of dopamine D(1), D(2) and D(4) receptors in rat forebrain. International Journal of Developmental Neuroscience, 18, 29–37CrossRefGoogle Scholar
Tarazi, F. I., Tomasini, E. C., & Baldessarini, R. J. (1998). Postnatal development of dopamine D4-like receptors in rat forebrain regions: Comparison with D2-like receptors. Brain Research. Developmental Brain Research, 110, 227–233CrossRefGoogle ScholarPubMed
Teicher, M. H., Andersen, S. L., & Hostetter, J. C. Jr. (1995). Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Brain Research. Developmental Brain Research, 89, 167–172CrossRefGoogle Scholar
Ungerstedt, U., Ljungberg, T., Hoffer, B., & Siggins, G. (1975). Dopaminergic supersensitivity in the striatum. Advances in Neurology, 9, 57–65Google ScholarPubMed
Valzelli, L. (1973). The “isolation syndrome” in mice. Psychopharmacologia, 31, 305–320CrossRefGoogle ScholarPubMed
Oers, H. J., Kloet, E. R., & Levine, S. (1997). Persistent, but paradoxical, effects on HPA regulation of infants maternally deprived at different ages. Stress, 1, 249–262CrossRefGoogle ScholarPubMed
Oers, H. J., Kloet, E. R., & Levine, S. (1999). Persistent effects of maternal deprivation on HPA regulation can be reversed by feeding and stroking, but not by dexamethasone. Journal of Neuroendocrinology, 11, 581–588CrossRefGoogle Scholar
Tol, H. H., Bunzow, J. R., Guan, H. C., Sunahara, R. K., Seeman, P., Niznik, H. B. (1991). Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature, 350, 610–614Google ScholarPubMed
Waddington, J. L., & Daly, S. A. (1993). Regulation of unconditioned motor behaviour by D1:D2 interactions. In Waddington, J. L. (Ed.), D1:D2 dopamine receptor interactions (pp. 51–78). San Diego: Academic PressGoogle Scholar
Weihmuller, F. B., & Bruno, J. P. (1989). Age-dependent plasticity in the dopaminergic control of sensorimotor development. Behavioural Brain Research, 35, 95–109CrossRefGoogle ScholarPubMed
Weihmuller, F. B., Bruno, J. P., Neff, N. H., & Hadjiconstantinou, M. (1990). Dopamine receptor plasticity following MPTP-induced nigrostriatal lesions in the mouse. European Journal of Pharmacology, 180, 369–372CrossRefGoogle ScholarPubMed
Weinstock, M., Speiser, Z., & Ashkenazi, R. (1978). Changes in brain catecholamine turnover and receptor sensitivity induced by social deprivation in rats. Psychopharmacology, 56, 205–209CrossRefGoogle ScholarPubMed
Weiss, I. C., Domeney, A. M., Heidbreder, C. A., Moreau, J. L., & Feldon, J. (2001). Early social isolation, but not maternal separation, affects behavioral sensitization to amphetamine in male and female adult rats. Pharmacology, Biochemistry and Behavior, 70, 397–409CrossRefGoogle Scholar
Wiesel, T. N., & Hubel, D. H. (1965). Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. Journal of Neuroscience, 28, 1029–1040Google ScholarPubMed
Wilmot, C. A., Vanderwende, C., & Spoerlein, M. T. (1986). Behavioral and biochemical studies of dopamine receptor sensitivity in differentially housed mice. Psychopharmacology, 89, 364–369CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×