Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-27T04:49:48.141Z Has data issue: false hasContentIssue false

12 - Viruses transmitted by ticks

Published online by Cambridge University Press:  21 August 2009

M. Labuda
Affiliation:
Institute of ZoologySlovak Academy of Sciences, Dubravska cesta 9, 845 06 Bratislava Slovakia
P. A. Nuttall
Affiliation:
Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB UK
Alan S. Bowman
Affiliation:
University of Aberdeen
Patricia A. Nuttall
Affiliation:
Centre for Ecology and Hydrology, Swindon
Get access

Summary

INTRODUCTION

Ticks transmit a wide variety of arboviruses (arthropod-borne viruses). Tick-borne viruses are found in six different viral families (Asfarviridae, Reoviridae, Rhabdoviridae, Orthomyxoviridae, Bunyaviridae, Flaviviridae) and at least nine genera. Some as yet unassigned tick-borne viruses may belong to a seventh family, the Arenaviridae. With only one exception (African swine fever virus) all tick-borne viruses (as well as all other arboviruses) are RNA viruses. Some tick-borne viruses pose a significant threat to the health of humans (tick-borne encephalitis virus, Crimean–Congo haemorrhagic fever virus) or livestock (African swine fever virus, Nairobi sheep disease virus). This chapter first considers the characteristics of ticks important in virus transmission and then presents an overview of the tick-borne members of different virus families.

TICKS AS VECTORS OF ARBOVIRUSES

Ticks are not insects. The significance of this statement is considered in a review of the marked contrasts between the biology of ticks and that of insects, and the consequences for their potential to transmit micro-organisms (Randolph, 1998). Interestingly, tick-borne viruses are found in all the RNA virus families in which insect-borne members are found, with the exception of the family Togaviridae. Virus–tick–vertebrate host relationships are highly specific, and fewer than 10% of all tick species (Argasidae and Ixodidae) are known to play a role as vectors of arboviruses. However, a few tick species transmit several (e.g. Ixodes ricinus, Amblyomma variegatum) or many (I. uriae) tick-borne viruses.

Type
Chapter
Information
Ticks
Biology, Disease and Control
, pp. 253 - 280
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arthur, D. R. (1963). British Ticks. London: Butterworths.Google Scholar
Artsob, H. (1988). Powassan encephalitis. In The Arboviruses: Epidemiology and Ecology, vol. 4, ed. Monath, T. P., pp. 29–49. Boca Raton, FL: CRC Press.Google Scholar
Balashov, Y. S. (1972). Bloodsucking ticks (Ixodoidea): vectors of diseases of man and animals. Miscellaneous Publications of the Entomological Society of America 8, 160–376.Google Scholar
Banerjee, K. (1988). Kyasanur Forest Disease. In The Arboviruses: Epidemiology and Ecology, vol. 3, ed. Monath, T. P., pp. 93–116. Boca Raton, FL: CRC Press.Google Scholar
Blaskovic, D. & Nosek, J. (1972). The ecological approach to the study of tick-borne encephalitis. Progress in Medical Virology 14, 275–320.Google Scholar
Booth, T. F., Davies, C. R., Jones, L. D., Staunton, D. & Nuttall, P. A. (1989). Anatomical basis of Thogoto virus infection in BHK cell culture and in the ixodid tick vector, Rhipicephalus appendiculatus. Journal of General Virology 70, 1093–1104.CrossRefGoogle ScholarPubMed
Booth, T. F., Steele, G. M., Marriott, A. C. & Nuttall, P. A. (1991). Dissemination, replication, and trans-stadial persistence of Dugbe virus (Nairovirus, Bunyaviridae) in the tick vector Amblyomma variegatum. American Journal of Tropical Medicine and Hygiene 45, 146–157.CrossRefGoogle ScholarPubMed
Burgdorfer, W. (1977). Tick-borne diseases in the United States: Rocky Mountain spotted fever and Colorado tick fever. Acta Tropica 34, 103–112.Google ScholarPubMed
Burgdorfer, W. & Varma, M. G. R. (1967). Trans-stadial and transovarial development of disease agents in arthropods. Annual Review of Entomology 12, 347–376.CrossRefGoogle ScholarPubMed
Calisher, C. H. (2001). Colorado tick fever. In The Encyclopedia of Arthropod-Transmitted Infections, ed. Service, M. W., pp. 121–126. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Charrel, R. N., Zaki, A. M., Attoui, H.et al. (2001). Complete coding sequence of the Alkhurma virus, a tick-borne flavivirus causing severe haemorrhagic fever in humans in Saudi Arabia. Biochemical and Biophysical Research Communications 287, 455–461.CrossRefGoogle ScholarPubMed
Chastel, C. (1988). Tick-borne virus infections of marine birds. Advances in Disease Vector Research 5, 25–60.Google Scholar
Chastel, C., Main, A. J., Couatarmanac'h, A., et al. (1984). Isolation of Eyach virus (Reoviridae, Colorado tick fever group) from Ixodes ricinus and I. ventalloi ticks in France. Archives of Virology 82, 161–171.CrossRefGoogle ScholarPubMed
Chernesky, M. A. & McLean, D. M. (1969). Localization of Powassan virus in Dermacentor andersoni ticks by immunofluorescence. Canadian Journal of Microbiology 15, 1399–1408.CrossRefGoogle ScholarPubMed
Clerx, J. P. M., Casals, J. & Bishop, D. H. L. (1981). Structural characteristics of nairoviruses (genus Nairovirus, Bunyaviridae). Journal of General Virology 55, 165–178.CrossRefGoogle Scholar
Silva, Da E. V., Rosa, Da A. P., Nunes, M., et al. (2005). Araguari virus, a new member of the family Orthomyxoviridae: serologic, ultrastructural, and molecular characterization. American Journal of Tropical Medicine and Hygiene 73, 1050–1058.Google ScholarPubMed
Danielova, V., Holubova, J., Pejcoch, M. & Daniel, M. (2002). Potential significance of transovarial transmission in the circulation of tick-borne encephalitis virus. Folia Parasitologica 49, 323–325.CrossRefGoogle ScholarPubMed
Darwish, M. & Hoogstraal, H. (1981). Arboviruses infecting humans and lower animals in Egypt: a review of thirty years of research. Journal of the Egyptian Public Health Association 61, 1–112.Google Scholar
Daubney, R. & Hudson, J. R. (1931). Nairobi sheep disease. Parasitology 23, 507–524.CrossRefGoogle Scholar
Davies, C. R., Jones, L. D., Green, B. M. & Nuttall, P. A. (1987). In vivo reassortment of Thogoto virus (a tick-borne influenza-like virus) following oral infection of Rhipicephalus appendiculatus ticks. Journal of General Virology 68, 2331–2338.CrossRefGoogle ScholarPubMed
Davies, C. R., Jones, L. D. & Nuttall, P. A. (1986). Experimental studies on the transmission cycle of Thogoto virus, a candidate orthomyxovirus, in Rhipicephalus appendiculatus ticks. American Journal of Tropical Medicine and Hygiene 35, 1256–1262.CrossRefGoogle Scholar
Devde, V. M., Khristova, M. L., Rollin, P. E. & Ksiazek, T. G. (2006). Crimean–Congo hemorrhagic fever virus genomics and global diversity. Journal of Virology 80, 8834–8842.Google Scholar
Dixon, L. K., Costa, J. V., Escribano, J. M., et al. (2000). Family Asfarviridae. In Virus Taxonomy, 7th Report of the International Committee on Taxonomy of Viruses, eds. Regenmortel, M. H. V., Fauquet, C. M., Bishop, D. H. L., et al., pp. 159–165. San Diego, CA: Academic Press.Google Scholar
Emmons, R. W., Oshiro, L. S., Johnson, H. N. & Lennette, E. H. (1972). Intraerythrocytic location of Colorado tick fever. Journal of General Virology 17, 185–195.CrossRefGoogle Scholar
Elliott, R. M. (ed.) (1996). The Bunyaviridae. New York: Plenum Press.CrossRefGoogle Scholar
Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U. & Ball, L. A. (eds.) (2005). Virus Taxonomy: Classification and Nomenclature of Viruses, 8th Report of the International Committee on Taxonomy of Viruses. San Diego, CA: Academic Press.Google ScholarPubMed
Freedman-Faulstich, E. Z. & Fuller, F. J. (1990). Nucleotide sequence of the tick-borne, orthomyxo-like Dhori/Indian/1313/61 virus envelope gene. Virology 175, 10–18.CrossRefGoogle ScholarPubMed
Frese, M., Weeber, M., Weber, F., Speth, V. & Haller, O. (1997). MX1 sensitivity: Batken virus is an orthomyxovirus closely related to Dhori virus. Journal of General Virology 78, 2453–2458.CrossRefGoogle ScholarPubMed
Germain, M., Saluzzo, J. F., Cornet, J. P., et al. (1979). Isolement du virus de la fièvre jaune à partir de la ponte et de larves d'une tique Amblyomma variegatum. Comptes Rendus des Séances de l'Academie des Sciences D 289, 635–637.Google Scholar
Gibbs, E. P. J. (2001). African swine fever. In The Encyclopedia of Arthropod-Transmitted Infections, ed. Service, M. W., pp. 7–13. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Gordon, S. W., Linthicum, K. J. & Moulton, J. R. (1993). Transmission of Crimean–Congo hemorrhagic fever virus in two species of Hyalomma ticks from infected adults to cofeeding immature forms. American Journal of Tropical Medicine and Hygiene 48, 576–580.CrossRefGoogle ScholarPubMed
Gould, E. A., Zanotto, P. M. de A. & Holmes, E. C. (1997). The genetic evolution of flaviviruses. In Factors in the Emergence of Arbovirus Diseases, eds. Saluzzo, J. F. & Dodet, B., pp. 51–63. Paris: Elsevier.Google Scholar
Grard, G., Lemasson, J.-J., Sylla, M., et al. (2006). Ngoye virus: a novel evolutionary lineage within the genus Flavivirus. Journal of General Virology 87, 3273–3277.CrossRefGoogle ScholarPubMed
Grard, G., Moureau, G., Charrel, R. N., et al. (2007). Genetic characterization of tick-borne flaviviruses: new insights into evolution, pathogenetic determinants and taxonomy. Virology 361, 80–92.CrossRefGoogle ScholarPubMed
Gresikova, M. & Calisher, C. H. (1988). Tick-borne encephalitis. In The Arboviruses: Epidemiology and Ecology, vol. 4, ed. Monath, T. P., pp. 177–202. Boca Raton, FL: CRC Press.Google Scholar
Gresikova, M., Nosek, J., Kozuch, O., Ernek, E. & Lichard, M. (1965). Study on the ecology of Tribeč virus. Acta Virologica 9, 83–89.Google Scholar
Gresikova, M., Sekeyova, M., Tempera, G., Guglielmino, S. & Castro, A. (1978). Identification of Sindbis virus strain isolated from Hyalomma marginatum ticks in Sicily. Acta Virologica 22, 231–232.Google Scholar
Honig, J. E., Osborne, J. C. & Nichol, S. T. (2004). The high genetic variation of viruses of the genus Nairovirus reflects the diversity of their predominant tick hosts. Virology 318, 10–16.CrossRefGoogle ScholarPubMed
Hoogstraal, H. (1973). Viruses and ticks. In Viruses and Invertebrates, ed. Gibbs, A. J., pp. 349–390. Amsterdam: North-Holland.Google Scholar
Hoogstraal, H. (1979). The epidemiology of tick-borne Crimean–Congo hemorrhagic fever in Asia, Europe, and Africa. Journal of Medical Entomology 15, 307–417.CrossRefGoogle ScholarPubMed
Hughes, L. E., Casper, E. A. & Clifford, C. M. (1974). Persistence of Colorado tick fever in red blood cells. American Journal of Tropical Medicine and Hygiene 23, 530–532.CrossRefGoogle ScholarPubMed
Iwata, H., Yamagawa, M. & Roy, P. (1992). Evolutionary relationships among the gnat-transmitted orbiviruses that cause African horse sickness, bluetongue, and epizootic hemorrhagic disease as evidenced by their capsid protein sequences. Virology 191, 251–261.CrossRefGoogle ScholarPubMed
Jones, L. D., Davies, C. R., Green, B. M. & Nuttall, P. A. (1987). Reassortment of Thogoto virus (a tick-borne influenza-like virus) in a vertebrate host. Journal of General Virology 68, 1299–1306.CrossRefGoogle Scholar
Karabatsos, N. (1985). International Catalogue of Arboviruses Including Certain Other Viruses of Vertebrates, 3rd edn. San Antonio, TX: American Society of Tropical Medicine and Hygiene.Google Scholar
Kaufman, W. R., Bowman, A. S. & Nuttall, P. A. (2002). Salivary fluid secretion in the ixodid tick Rhipicephalus appendiculatus is inhibited by Thogoto virus infection. Experimental and Applied Acarology 25, 661–674.CrossRefGoogle Scholar
Kaufman, W. R. & Nuttall, P. A. (1996). Amblyomma variegatum (Acari: Ixodidae): mechanism and control of arbovirus secretion in tick saliva. Experimental Parasitology 82, 316–323.CrossRefGoogle ScholarPubMed
Kaufman, W. R. & Nuttall, P. A. (2003). Rhipicephalus appendiculatus (Acari: Ixodidae): dynamics of Thogoto virus infection in female ticks during feeding on guinea pigs. Experimental Parasitology 104, 20–25.CrossRefGoogle ScholarPubMed
Kleiboeker, S. B., Scoles, G. A., Burrage, T. G. & Sur, J. H. (1999). African swine fever virus replication in the midgut epithelium is required for infection of Ornithodoros ticks. Journal of Virology 73, 8587–8598.Google ScholarPubMed
Kovar, V., Kopacek, P. & Grubhoffer, L. (2000). Isolation and characterization of Dorin M, a lectin from plasma of the soft tick Ornithodoros moubata. Insect Biochemistry and Molecular Biology 30, 195–205.CrossRefGoogle Scholar
Labuda, M., Danielova, V., Jones, L. D. & Nuttall, P. A. (1993). Amplification of tick-borne encephalitis virus infection during co-feeding of ticks. Medical and Veterinary Entomology 7, 339–342.CrossRefGoogle ScholarPubMed
Lawrie, C. H., Uzcategui, N. Y., Gould, E. A. & Nuttall, P. A. (2004). Ixodid and argasid tick species and West Nile virus. Emerging Infectious Diseases 10, 653–657.CrossRefGoogle ScholarPubMed
Leahy, M. B., Dessens, J. T. & Nuttall, P. A. (1997). In vitro polymerase activity of Thogoto virus: evidence for a unique cap snatching mechanism in a tick-borne orthomyxovirus. Journal of Virology 71, 8347–8351.Google Scholar
Lee, V. H., Kemp, G. E., Madbouly, M. H., et al. (1974). Jos, a new tick-borne virus from Nigeria. American Journal of Veterinary Research 35, 1165–1167.Google ScholarPubMed
Libikova, H., Mayer, V., Kozuch, O., et al. (1964). Isolation from Ixodes persulcatus ticks of cytopathic agents (Kemerovo virus) differing from tick-borne encephalitis virus and some of their properties. Acta Virologica 8, 289–301.Google ScholarPubMed
Lindenbach, B. D. & Rice, C. M. (2001). Flaviviridae: the viruses and their replication. In Fields' Virology, 4th edn, eds. Knipe, D. M., Howley, P. M.et al., pp. 991–1041. Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Ludwig, G. V., Israel, B. A., Christensen, B. M., Yuill, T. M. & Schultz, K. T. (1991). Role of La Crosse virus glyco-proteins in attachment of virus to host cells. Virology 181, 564–571.CrossRefGoogle Scholar
Lvov, D. K. (1988). Omsk haemorrhagic fever. In The Arboviruses: Epidemiology and Ecology, vol. 3, ed. Monath, T. P., pp. 205–216. Boca Raton, FL: CRC Press.Google Scholar
Lvov, D. K., Chervonski, V. I., Gostinshchikova, I. N., et al. (1972). Isolation of Tyuleniy virus from ticks Ixodes (Ceratixodes) putus Pick.-Camb. 1878 collected on Commodore Islands. Archiv für gesamte Virusforschung 38, 139–142.CrossRefGoogle ScholarPubMed
Lvov, D. K., Timopheeva, A. A., Smirnov, V. A., et al. (1975). Ecology of tick-borne viruses in colonies of birds in the USSR. Medical Biology 53, 325–330.Google ScholarPubMed
Main, A. J., Downs, W. G., Shope, R. E. & Wallis, R. C. (1973). Great Island and Bauline: two new Kemerovo group orbiviruses from Ixodes uriae in eastern Canada. Journal of Medical Entomology 10, 229–235.CrossRefGoogle ScholarPubMed
Mandl, C. W., Kroschewski, H., Allison, S. L., et al. (2001). Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparin sulfate binding sites in the envelope protein and attenuation in vivo. Journal of Virology 75, 5627–5637.CrossRefGoogle Scholar
Marin, M. S., Zanotto, P. M. de A., Gritsun, T. S. & Gould, E. A. (1995). Phylogeny of Tyu, SRE and CFA virus: different evolutionary rates in the genus Flavivirus. Virology 206, 1133–1139.CrossRefGoogle ScholarPubMed
Marriott, A. C. & Nuttall, P. A. (1996). Large RNA segment of Dugbe nairovirus encodes the putative RNA polymerase. Journal of General Virology 77, 1775–1780.CrossRefGoogle ScholarPubMed
Mead, D. G., Ramberg, F. B., Besselsen, D. G. & Mare, C. J. (2000). Transmission of vesicular stomatitis virus from infected to noninfected black flies co-feeding on nonviremic deer mice. Science 287, 485–487.CrossRefGoogle ScholarPubMed
Morse, M. A., Marriott, A. C. & Nuttall, P. A. (1992). The glycoprotein of Thogoto virus (a tick-borne orthomyxo-like virus) is related to the baculovirus glycoprotein gp64. Virology 186, 640–646.CrossRefGoogle ScholarPubMed
Nuttall, P. A. (1984). Tick-borne viruses in seabird colonies. Seabird 1, 31–41.Google Scholar
Nuttall, P. A. (1993). Orbiviruses associated with birds. In Virus Infections of Vertebrates, vol. 4, Virus Infections of Birds, eds. McFerran, J. B. & McNulty, M. S., pp. 195–198. Amsterdam: Elsevier.Google Scholar
Nuttall, P. A. (1999). Pathogen–tick–host interactions: Borrelia burgdorferi and TBE virus. Zentralblatt für Bakteriologie 289, 492–505.CrossRefGoogle ScholarPubMed
Nuttall, P. A. (2001). Crimean–Congo haemorrhagic fever. In The Encyclopedia of Arthropod-Transmitted Infections, ed. Service, M. W., pp. 126–132. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Nuttall, P. A. & Moss, S. R. (1989). Genetic reassortment indicates a new grouping for tick-borne orbiviruses. Virology 171, 156–161.CrossRefGoogle ScholarPubMed
Nuttall, P. A., Jacobs, S. C., Jones, L. D., Carey, D. & Moss, S. R. (1992). Enhanced neurovirulence of tick-borne orbiviruses resulting from genetic modulation. Virology 187, 407–412.CrossRefGoogle ScholarPubMed
Nuttall, P. A., Morse, M. A., Jones, L. D. & Portela, A. (1995). Adaptation of members of the Orthomyxoviridae family to transmission by ticks. In Molecular Basis of Virus Evolution, eds. Gibbs, A. J., Calisher, C. H. & García-Arenal, F., pp. 416–425. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Rampas, J. & Gallia, F. (1949). [Isolation of encephalitis virus from Ixodes ricinus ticks.] (in Czech) Casopis Lekaru Ceskych 88, 1179–1180.Google Scholar
Randolph, S. E. (1998). Ticks are not insects: consequences of contrasting vector biology for transmission potential. Parasitology Today 14, 186–192.CrossRefGoogle Scholar
Randolph, S. E., Miklisova, D., Lysy, J., Rogers, D. J. & Labuda, M. (1999). Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology 118, 177–186.CrossRefGoogle ScholarPubMed
Rehacek, J. (1965). Development of animal viruses and rickettsiae in ticks and mites. Annual Review of Entomology 10, 1–24.CrossRefGoogle Scholar
Rehse-Kupper, B., Casals, J., Rehse, E. & Ackermann, R. (1976). Eyach: an arthropod-borne virus related to Colorado tick fever virus in the Federal Republic of Germany. Acta Virologica 20, 339–342.Google ScholarPubMed
Reid, H. W. (1984). Epidemiology of louping-ill. In Vector Biology, eds. Mayo, M. A. & Harrap, K. A., pp. 161–178. London: Academic Press.Google Scholar
Rennie, L., Wilkinson, P. J. & Mellor, P. S. (2000). Effects of infection of the tick Ornithodoros moubata with African swine fever virus. Medical and Veterinary Entomology 14, 355–360.CrossRefGoogle ScholarPubMed
Rennie, L., Wilkinson, P. J. & Mellor, P. S. (2001). Transovarial transmission of African swine fever virus in the argasid tick Ornithodoros moubata. Medical and Veterinary Entomology 15, 140–146.CrossRefGoogle ScholarPubMed
Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. (1995). The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375, 291–298.CrossRefGoogle ScholarPubMed
Roy, P. (2001). Orbiviruses. In Fields' Virology, 4th edn, eds. Knipe, D. M., Howley, P. M.et al., pp. 1835–1869. Philadelphia, PA: Lippincott, Williams & Wilkins.Google Scholar
Salas, M. L. (1994). African swine fever virus. In Encyclopedia of Virology, vol. 1, eds. Webster, R. G. & Granoff, A., pp. 1–29. London: Academic Press.Google Scholar
Schmaljohn, C. S. & Hooper, J. W. (2001). Bunyaviridae: the viruses and their replication. In Fields' Virology, 4th edn, eds. Knipe, D. M., Howley, P. M.et al., pp. 1581–1602. Philadelphia, PA: Lippincott, Williams & Wilkins.Google Scholar
Schoehn, G., Moss, S. R., Nuttall, P. A. & Hewat, E. A. (1997). Structure of Broadhaven virus by cryo-electron microscopy: correlation of structural and phenotypic properties of Broadhaven virus and bluetongue virus outer capsid proteins. Virology 235, 191–200.CrossRefGoogle Scholar
Shepherd, A. J., Swanepoel, R., Cornel, A. J. & Mathee, O. (1989). Experimental studies on the replication and transmission of Crimean–Congo hemorrhagic fever virus in some African tick species. American Journal of Tropical Medicine and Hygiene 40, 326–331.CrossRefGoogle ScholarPubMed
Shiu, S. Y. W., Ayres, M. D. & Gould, E. A. (1991). Economic sequence of the structural proteins of louping ill virus: comparative analysis with tick-borne encephalitis virus. Virology 180, 411–415.CrossRefGoogle Scholar
Simons, J. F., Hellman, U. & Pettersson, R. F. (1990). Uukuniemi virus S RNA segment: ambisense coding strategy, packaging of complementary strands into virions, and homology to members of the genus Phlebovirus. Journal of Virology 64, 247–255.Google ScholarPubMed
Skofertsa, P. G., Gaidamovich, S. I. A., Obukhova, V. R., Korchmar' Nd, I. A. & Rovoi, P. I. (1972). Isolation of Kemerovo group Kharagysh virus on the territory of the Moldavian SSR. Voprosy Virusologii 17, 709–711.Google ScholarPubMed
Smith, C. E. G. & Varma, M. G. R. (1981). Louping ill. In CRC Handbook Series of Zoonoses, Section B, Viral Diseases, vol. 1, ed. Beran, G. W., pp. 191–200. Boca Raton, FL: CRC Press.Google Scholar
Sonenshine, D. E. (1991). Biology of Ticks, vol. 1. Oxford, UK:Oxford University Press.Google Scholar
Sreenivasan, M. A., Bhat, H. R. & Rajagopalan, P. K. (1979). Studies on the transmission of Kyasanur forest disease virus by partly fed ixodid ticks. Indian Journal of Medical Research 69, 708–713.Google ScholarPubMed
Steele, G. M. & Nuttall, P. A. (1989). Difference in vector competence of two species of sympatric ticks, Amblyomma variegatum and Rhipicephalus appendiculatus for Dugbe virus (Nairovirus: Bunyaviridae). Virus Research 14, 73–84.CrossRefGoogle Scholar
Swanepoel, R., Shepherd, A. J., Leman, P. A., et al. (1987). Epidemiological and clinical features of Crimean–Congo hemorrhagic fever in southern Africa. American Journal of Tropical Medicine and Hygiene 36, 120–132.CrossRefGoogle ScholarPubMed
Taylor, R. M., Hurlbut, H. S., Work, T. H. & Kingston, J. R. (1966). Arboviruses isolated from Argas ticks in Epypt: Quaranfil, Chenuda and Nyaminini. American Journal of Tropical Medicine and Hygiene 15, 76–86.CrossRefGoogle Scholar
Telford, S. R., Armstrong, P., Katavolos, P., et al. (1997). A new tick-borne encephalitis-like virus infecting New England deer ticks, Ixodes dammini. Emerging Infectious Diseases 3, 165–170.CrossRefGoogle ScholarPubMed
Thomas, L. A., Kennedy, R. C. & Eklund, C. M. (1960). Isolation of a virus closely related to Powassan virus from Dermacentor andersoni collected along north Cache la Poudre River, Colo. Proceedings of the Society of Experimental Biology and Medicine 104, 355–359.CrossRefGoogle ScholarPubMed
Titus, R. G. & Ribeiro, J. M. C. (1990). The role of vector saliva in transmission of arthropod-borne diseases. Parasitology Today 6, 157–160.CrossRefGoogle Scholar
Traavik, T. (1979). Arboviruses in Norway. In Arctic and Tropical Arboviruses, ed. Kurstak, E., pp. 67–81. New York: Academic Press.Google Scholar
Turell, M. J. (1988). Horizontal and vertical transmission of viruses by insect and tick vectors. In The Arboviruses: Ecology and Epidemiology, vol. 1, ed. Monath, T. P., pp. 127–152. Boca Raton, FL: CRC Press.Google Scholar
Vancova, M., Zacharovova, K., Grubhoffer, L. & Nebesarova, J. (2006). Ultrastructure and lectin characterization of granular salivary cells from Ixodes ricinus females. Journal of Parasitology 92, 431–440.CrossRefGoogle ScholarPubMed
Varma, M. G. R. & Smith, C. E. G. (1972). Multiplication of Langat virus in the tick Ixodes ricinus. Acta Virologica16, 159–167.Google ScholarPubMed
Vermeil, C., Lavillaureix, J. & Reeb, E. (1959). Infection et transmission expérimentales du virus West Nile par Ornithodoros coniceps (Canestrini) de souche Tunisienne. Bulletin de la Société de Pathologie Exotique 53, 489–495.Google Scholar
Vinuela, E. (1985). African swine fever. Current Topics in Microbiology and Immunology 116, 151–170.Google ScholarPubMed
Wang, H. & Nuttall, P. A. (2001). Intra-stadial tick-borne Thogoto virus (Orthomyxoviridae) transmission: accelerated arbovirus transmission triggered by host death. Parasitology 122, 439–446.CrossRefGoogle ScholarPubMed
Watts, D. M., Ksiazek, T. G., Lithicum, K. J. & Hoogstraal, H. (1989). Crimean–Congo hemorrhagic fever. In The Arboviruses: Epidemiology and Ecology, vol. 2, ed. Monath, T. P., pp. 177–260. Boca Raton, FL: CRC Press.Google Scholar
Weber, F., Jambrina, E., Gonzalez, S., et al. (1998). In vivo reconstitution of active Thogoto virus polymerase: assays for the compatibility with other orthomyxovirus core proteins and template RNAs. Virus Research 58, 13–20.CrossRefGoogle ScholarPubMed
Woodall, J. (2001). Thogoto virus. In The Encyclopedia of Arthropod-Transmitted Infections, ed. Service, M. W., pp. 504–506. Wallingford, UK: CAB International.CrossRefGoogle Scholar
Yanez, R. J., Rodriguez, J. M., Nogal, M. L., et al. (1995). Analysis of the complete nucleotide sequence of African swine fever virus. Virology 208, 249–278.CrossRefGoogle ScholarPubMed
Yozawa, T., Kutish, G. F., Afonso, C. L., Lu, Z. & Rock, D. L. (1994). Two novel multigene families, 530 and 300, in the terminal variable regions of African swine fever virus genome. Virology 202, 997–1002.CrossRefGoogle ScholarPubMed
Yunker, C. E. (1975). Tick-borne viruses associated with seabirds in North America and related islands. Medical Biology 53, 302–311.Google ScholarPubMed
Zaki, A. M. (1997). Isolation of a flavivirus related to the tick-borne encephalitis complex from human cases in Saudi Arabia. Transactions of the Royal Society of Tropical Medicine and Hygiene 91, 179–181.CrossRefGoogle ScholarPubMed
Zanotto, P. M. de A., Gao, G. F., Gritsun, T., et al. (1995). An arbovirus cline across the northern hemisphere. Virology 210, 152–159.CrossRefGoogle ScholarPubMed
Zeller, H. G., Karabatsos, N., Calisher, C. H., et al. (1989 a). Electron microscopic and antigenic studies of uncharacterized viruses. I. Evidence suggesting placement of viruses in the families Arenaviridae, Paramyxoviridae, or Poxviridae. Archives of Virology 108, 191–209.CrossRefGoogle ScholarPubMed
Zeller, H. G., Karabatsos, N., Calisher, C. H., et al. (1989 b). Electron microscopic and antigenic studies of uncharacterized viruses. II. Evidence suggesting placement of viruses in the family Bunyaviridae. Archives of Virology 108, 211–227.CrossRefGoogle ScholarPubMed
Zilber, L. A. & Soloviev, V. D. (1946). Far Eastern tick-borne spring-summer (spring) encephalitis. American Review of Soviet Medicine (Special Suppl.), 1–80.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Viruses transmitted by ticks
    • By M. Labuda, Institute of ZoologySlovak Academy of Sciences, Dubravska cesta 9, 845 06 Bratislava Slovakia, P. A. Nuttall, Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB UK
  • Edited by Alan S. Bowman, University of Aberdeen, Patricia A. Nuttall
  • Book: Ticks
  • Online publication: 21 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511551802.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Viruses transmitted by ticks
    • By M. Labuda, Institute of ZoologySlovak Academy of Sciences, Dubravska cesta 9, 845 06 Bratislava Slovakia, P. A. Nuttall, Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB UK
  • Edited by Alan S. Bowman, University of Aberdeen, Patricia A. Nuttall
  • Book: Ticks
  • Online publication: 21 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511551802.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Viruses transmitted by ticks
    • By M. Labuda, Institute of ZoologySlovak Academy of Sciences, Dubravska cesta 9, 845 06 Bratislava Slovakia, P. A. Nuttall, Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB UK
  • Edited by Alan S. Bowman, University of Aberdeen, Patricia A. Nuttall
  • Book: Ticks
  • Online publication: 21 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511551802.013
Available formats
×