Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-01T02:04:31.029Z Has data issue: false hasContentIssue false

Evidence from the Rio Bayo valley on the extent of the North Patagonian Icefield during the Late Pleistocene–Holocene Transition

Published online by Cambridge University Press:  20 January 2017

Neil F. Glasser*
Affiliation:
Institute of Geography and Earth Sciences, University of Wales, Aberystwyth, SY23 3DB Wales, UK
Stephan Harrison
Affiliation:
School of Geography and the Environment, University of Oxford, Mansfield Road, Oxford OX1 3TB, England, UK
Susan Ivy-Ochs
Affiliation:
Teilchenphysik, ETH Hoenggerberg, CH-8093 Zurich, Switzerland
Geoffrey A.T. Duller
Affiliation:
Institute of Geography and Earth Sciences, University of Wales, Aberystwyth, SY23 3DB Wales, UK
Peter W. Kubik Jr.
Affiliation:
Paul Scherrer Institute, c/o Institute of Particle Physics, ETH-Hoenggerberg, 8093 Zurich, Switzerland
*
*Corresponding author. Fax: +44 1970 622659.Email Address:nfg@aber.ac.uk(N.F. Glasser).

Abstract

This paper presents data on the extent of the North Patagonian Icefield during the Late Pleistocene–Holocene transition using cosmogenic nuclide exposure age and optically stimulated luminescence dating. We describe geomorphological and geochronological evidence for glacier extent in one of the major valleys surrounding the North Patagonian Icefield, the Rio Bayo valley. Geomorphological mapping provides evidence for the existence of two types of former ice masses in this area: (i) a large outlet glacier of the North Patagonian Icefield, which occupied the main Rio Bayo valley, and (ii) a number of small glaciers that developed in cirques on the slopes of the mountains surrounding the valley. Cosmogenic nuclide exposure-age dating of two erratic boulders on the floor of the Rio Bayo valley indicate that the outlet glacier of the icefield withdrew from the Rio Bayo valley after 10,900 ± 1000 yr (the mean of two boulders dated to 11,400 ± 900 yr and 10,500 ± 800 yr). Single-grain optically stimulated luminescence (OSL) dating of an ice-contact landform constructed against this glacier indicates that this ice mass remained in the valley until at least 9700 ± 700 yr. The agreement between the two independent dating techniques (OSL and cosmogenic nuclide exposure age dating) increases our confidence in these age estimates. A date obtained from a boulder on a cirque moraine above the main valley indicates that glaciers advanced in cirques surrounding the icefield some time around 12,500 ± 900 yr. This evidence for an expanded North Patagonian Icefield between 10,900 ± 1000 yr and 9700 ± 700 yr implies cold climatic conditions dominated at this time.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andres, M.S., Bernasconi, S.M., McKenzie, J.A., Rohl, U., (2003). Southern Ocean deglacial record supports global Younger Dryas. Earth and Planetary Science Letters 216, 515524.CrossRefGoogle Scholar
Aniya, M., (1987). Moraine formation at Soler Glacier, Patagonia. Bulletin of Glacier Research 4, 107117.Google Scholar
Ariztegui, D., Bianchi, M.M., Masaferro, J., Lafargue, E., Niessen, F., (1997). Interhemispheric synchrony of late-glacial climatic instability as recorded in proglacial Lake Mascardi, Argentina. Journal of Quaternary Science 12, 333338.3.0.CO;2-0>CrossRefGoogle Scholar
Ashworth, A.C., Markgraf, V., Villagran, C., (1991). Late Quaternary climatic history of the Chilean Channels based on fossil pollen and beetle analyses, with an analysis of the modern vegetation and pollen rain. Journal of Quaternary Science 6, 279291.CrossRefGoogle Scholar
Bennett, K.D., Haberle, S.G., Lumley, S.H., (2000). The Last Glacial–Holocene transition in Southern Chile. Science 290, 325328.CrossRefGoogle ScholarPubMed
Bøtter-Jensen, L., Andersen, C.E., Duller, G.A.T., Murray, A.S., (2003). Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiation Measurements 37, 535541.CrossRefGoogle Scholar
Denton, G.H., Hendy, C.H., (1994). Younger Dryas advance of Franz Josef Glacier in the Southern Alps of New Zealand. Science 264, 14341437.CrossRefGoogle Scholar
Denton, G.H., Heusser, C.J., Lowell, T.V., Moreno, P.I., Andersen, B.G., Heusser, L.E., Schluchter, C., Marchant, D.R., (1999). Interhemispheric linkage of paleoclimate during the last glaciation. Geografiska Annaler 81A, 107153.CrossRefGoogle Scholar
Duller, G.A.T., (2003). Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37, 161165.CrossRefGoogle Scholar
Duller, G.A.T., (2004). Luminescence dating of Quaternary sediments: recent developments. Journal of Quaternary Science 19, 183192.CrossRefGoogle Scholar
Duller, G.A.T., Murray, A.S., (2000). Luminescence dating of sediments using individual mineral grains. Geologos 5, 88106.Google Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., (1999). Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, Experimental design and statistical models. Archaeometry 41, 339364.CrossRefGoogle Scholar
Glasser, N.F., Hambrey, M.J., (2002). Sedimentary facies and landform genesis at a temperate outlet glacier: Soler Glacier, North Patagonian Icefield. Sedimentology 49, 4364.CrossRefGoogle Scholar
Glasser, N.F., Harrison, S., Winchester, V., Aniya, M., (2004). Late Pleistocene and Holocene palaeoclimate and glacier fluctuations in Patagonia. Global and Planetary Change 43, 79101.CrossRefGoogle Scholar
Gosse, J.C., Phillips, F.M., (2001). Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews 20, 14751560.CrossRefGoogle Scholar
Hajdas, I., Bonani, G., Moreno, P.I., Ariztegui, D., (2003). Precise radiocarbon dating of late-glacial cooling in mid-latitude South America. Quaternary Research 59, 7078.CrossRefGoogle Scholar
Harrison, S., Winchester, V., (1998). Historical fluctuations of the Gualas and Reicher Glaciers, North Patagonian Icefield, Chile. The Holocene 8, 481485.CrossRefGoogle Scholar
Harrison, S., Glasser, N.F., Aniya, M., (2004). Morphostratigraphy of moraines in the Lago Tranquilo area, Chilean Patagonia. Bulletin of Glaciological Research 21, 3743.Google Scholar
Heusser, C.J., (1993). Late-glacial of Southern South America. Quaternary Science Reviews 12, 345350.CrossRefGoogle Scholar
Heusser, C.J., (2003). Ice Age Southern Andes: A Chronicle of Paleocological Events. Developments in Quaternary Science 3. Elsevier, .Google Scholar
Heusser, C.J., Streeter, S.S., (1980). A temperature and precipitation record of the past 16,000 years in southern Chile. Science 210, 13451347.CrossRefGoogle Scholar
Hoganson, J.W., Ashworth, A.C., (1992). Fossil beetle evidence for climatic change 18,000–10,000 years B.P. in south-central Chile. Quaternary Research 37, 101116.CrossRefGoogle Scholar
Ivy-Ochs, S., Schlüchter, C., Kubik, P.W., Denton, G.H., (1999). Moraine exposure dates imply synchronous Younger Dryas glacier advance in the European Alps and in the Southern Alps of New Zealand. Geografiska Annaler 81A, 313323.CrossRefGoogle Scholar
Ivy-Ochs, S., Schäfer, J., Kubik, P.W., Synal, H.-A., Schlüchter, C., (2004). Timing of deglaciation on the northern Alpine foreland (Switzerland). Eclogae Geologicae Helvetiae 97, 4755.CrossRefGoogle Scholar
Jacobs, Z., Duller, G.A.T., Wintle, A.G., (2003). Optical dating of dune sand from Blombos Cave, South Africa: II—Single grain data. Journal of Human Evolution 44, 613625.CrossRefGoogle ScholarPubMed
Kohl, C.P., Nishiizumi, K., (1992). Chemical isolation of quartz for measurement of in-situ produced cosmogenic nuclides. Geochimica Cosmochimica Acta 56, 35833587.CrossRefGoogle Scholar
Lamy, F., Hebbeln, D., Röhl, U., Wefer, G., (2001). Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the South Westerlies. Earth and Planetary Science Letters 185, 369382.CrossRefGoogle Scholar
Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H.W., Stoner, J., (2004). Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304, 19591962.CrossRefGoogle ScholarPubMed
Lowell, T.V., Heusser, C.J., Andersen, B.G., Moreno, P.I., Hauser, A., Heusser, L.E., Schluchter, C., Marchant, D.R., Denton, G.H., (1995). Interhemispheric correlation of Late Pleistocene glacial events. Science 269, 15411549.CrossRefGoogle ScholarPubMed
Lumley, S.H., Switsur, R., (1993). Late Quaternary chronology of the Taitao Peninsula, southern Chile. Journal of Quaternary Science 8, 161165.CrossRefGoogle Scholar
Markgraf, V., (1991). Younger Dryas in southern South America?. Boreas 20, 6369.CrossRefGoogle Scholar
Markgraf, V., (1993). Younger Dryas in southern South America—An update. Quaternary Science Reviews 12, 351355.CrossRefGoogle Scholar
Markgraf, V., Seltzer, G.O., (2001). Pole–Equator–Pole paleoclimates of the Americas integration: toward the big picture.Markgraf, V. Interhemispheric Climate Linkages Academic Press, London.433442.CrossRefGoogle Scholar
Markgraf, V., Webb, R.S., Anderson, K.H., Anderson, L., (2002). Modern pollen/climate calibration for southern South America. Palaeogeography, Palaeoclimatology, Palaeoecology 181, 375397.CrossRefGoogle Scholar
Massaferro, J., Brooks, S.J., (2002). Response of chironomids to Late Quaternary environmental change in the Taitao Peninsula, southern Chile. Journal of Quaternary Science 17, 101111.CrossRefGoogle Scholar
McCulloch, R.D., Sugden, D.E., (2001). Reply: climatic inferences from glacial and palaeoecological evidence at the last glacial termination, Southern South America. Journal of Quaternary Science 16, 293294.CrossRefGoogle Scholar
McCulloch, R.D., Bentley, M.J., Purves, R.S., Hulton, N.R.J., Sugden, D.E., Clapperton, C.M., (2000). Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. Journal of Quaternary Science 15, 409417.3.0.CO;2-#>CrossRefGoogle Scholar
Moreno, P.I., Jacobson, G.L., Lowell, T.V., Denton, G.H., (2001). Interhemispheric climate links revealed by a late-glacial cooling episode in southern Chile. Nature 409, 804808.CrossRefGoogle ScholarPubMed
Murray, A.S., Olley, J.M., (2002). Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. Geochronometria 21, 116.Google Scholar
Murray, A.S., Wintle, A.G., (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.CrossRefGoogle Scholar
Ochs, M., Ivy-Ochs, S., (1997). The chemical behavior of Be, Al, Fe, Ca, and Mg during AMS target preparation modeled with chemical speciation calculations. Nuclear Instruments and Methods B 123, 235240.CrossRefGoogle Scholar
Olley, J.M., de Deckker, P., Roberts, R.G., Fifield, L.K., Yoshida, H., Hancock, G., (2004). Optical dating of deep-sea sediments using single grains of quartz: a comparison with radiocarbon. Sedimentary Geology 169, 175189.CrossRefGoogle Scholar
Rahmstorf, S., (2002). Ocean circulation and climate during the past 120,000 years. Nature 419, 207214.CrossRefGoogle ScholarPubMed
Roberts, R.G., Bird, M., Olley, J., Galbraith, R., Lawson, E., Laslett, G., Yoshida, H., Jones, R., Fullagar, R., Jacobsen, G., Hua, Q., (1998). Optical and radiocarbon dating at Jinmium rock shelter in northern Australia. Nature 393, 358362.CrossRefGoogle Scholar
Small, E.E., Anderson, R.S., Repka, J.L., Finkel, R., (1997). Erosion rates of alpine bedrock summit surfaces deduced from in situ 10Be and 26Al. Earth and Planetary Science Letters 150, 413425.CrossRefGoogle Scholar
Stone, J.O., (2000). Air pressure and cosmogenic isotope production. Journal of Geophysical Research-Solid Earth 105, B10, 2375323759.CrossRefGoogle Scholar
Synal, H.-A., Bonani, G., Doebeli, M., Ender, R.M., Gartenmann, P., Kubik, P.W., Schnabel, C., Suter, M., (1997). Status report of the PSI/ETH AMS facility. Nuclear Instruments and Methods B 123, 6268.CrossRefGoogle Scholar
Turner, K.J., Fogwill, C.J., McCulloch, R.D., Sugden, D.E., (2005). Deglaciation of the eastern flank of the North Patagonian Icefield and associated continental-scale lake diversions. Geografiska Annaler 87A, 363374.CrossRefGoogle Scholar
van Geel, B., Heusser, C.J., Renssen, H., Schuurmans, C.J.E., (2000). Climatic change in Chile at around 2700 B.P. and global evidence for solar forcing: a hypothesis. The Holocene 10, 659664.CrossRefGoogle Scholar
Veit, H., (1996). Southern Westerlies during the Holocene deduced from geomorphological and pedological studies in the Norte Chico, Northern Chile (27–33°S). Palaeogeography, Palaeoclimatology, Palaeoecology 123, 107119.CrossRefGoogle Scholar
Wenzens, G., (2001). Comment: climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. Journal of Quaternary Science 16, 291293.CrossRefGoogle Scholar
White, J.W.C., Cias, P., Figge, I.A., Kenny, R., Markgraf, V., (1994). A high-resolution record of atmospheric CO2 content from carbon isotopes in peat. Nature 367, 153156.CrossRefGoogle Scholar