Elsevier

Redox Biology

Volume 33, June 2020, 101509
Redox Biology

Mitochondria dysfunction and metabolic reprogramming as drivers of idiopathic pulmonary fibrosis

https://doi.org/10.1016/j.redox.2020.101509Get rights and content
Under a Creative Commons license
open access

Abstract

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease of unknown etiology. It is characterized by deposition of extracellular matrix proteins, like collagen and fibronectin in the lung interstitium leading to respiratory failure. Our understanding of the pathobiology underlying IPF is still incomplete; however, it is accepted that aging is a major risk factor in the disease while growing evidence suggests that the mitochondria plays an important role in the initiation and progression of pulmonary fibrosis. Mitochondria dysfunction and metabolic reprogramming had been identified in different IPF lung cells (alveolar epithelial cells, fibroblasts, and macrophages) promoting low resilience and increasing susceptibility to activation of profibrotic responses. Here we summarize changes in mitochondrial numbers, biogenesis, turnover and associated metabolic adaptations that promote disrepair and fibrosis in the lung. Finally, we highlight new possible therapeutic approaches focused on ameliorate mitochondrial dysfunction.

Keywords

Fibrosis
Aging
Mitochondrial dysfunction
Epithelial cells
Fibroblast
Macrophage

Cited by (0)