Stage-specific functional relationships between Tub1 and Tub2 beta-tubulins in the wheat scab fungus Fusarium graminearum

https://doi.org/10.1016/j.fgb.2019.103251Get rights and content
Under a Creative Commons license
open access

Highlights

  • Two beta tubulin genes with similar subcellular localization.

  • Overlapping functions of two beta-tubulin genes at asexual stage.

  • Distinct functions of two beta-tubulin genes in DON production.

  • Increased protein expression of beta1 tubulin in beta2 tubulin deletion background.

Abstract

The filamentous ascomycete Fusarium graminearum contains two β-tubulin genes TUB1 and TUB2 that differ in functions during vegetative growth and sexual reproduction. To further characterize their functional relationship, in this study we determined the co-localization of Tub1 and Tub2 and assayed their expression levels in different mutants and roles in DON production. Tub1 co-localized with Tub2 to the same regions of microtubules in conidia, hyphae, and ascospores. Whereas deletion of TUB1 had no obvious effect on the transcription of TUB2 and two α-tubulin genes (TUB4 and TUB5), the tub2 mutant was up-regulated in TUB1 transcription. To assay their protein expression levels, polyclonal antibodies that could specifically detect four α- and β-tubulin proteins were generated. Western blot analyses showed that the abundance of Tub1 proteins was increased in tub2 but reduced in tub4 and tub5 mutants. Interestingly, protein expression of Tub4 and Tub5 was decreased in the tub1 mutant in comparison with the wild type, despite a lack of obvious changes in their transcription. In contrast, deletion of TUB2 had no effect on translation of TUB4 and TUB5. Ectopic expression of Tub2-mCherry partially recovered the growth defect of the tub1 mutant but did not rescue its defect in sexual reproduction. Expression of Tub1-GFP in the tub2 mutant also partially rescued its defects in vegetative growth, suggesting that disturbance in the balance of α- and β-tubulins contributes to mutant defects. The tub2 but not tub1 mutant was almost blocked in DON biosynthesis. Expression of TRI genes, toxisome formation, and DON-related cellular differentiation were significantly reduced in the tub2 mutant. Overall, our results showed that Tub1 and Tub2 share similar subcellular localization and have overlapping functions during vegetative growth but they differ in functions in DON production and ascosporogenesis in F. graminearum.

Keywords

Fusarium graminearum
Tubulin
Localization
Vegetative growth
DON

Cited by (0)