Novel arylidene malonate derivative, KM-34, showed neuroprotective effects on in vitro and in vivo models of ischemia/reperfusion

https://doi.org/10.1016/j.ejphar.2021.174025Get rights and content
Under an Elsevier user license
open access

Abstract

Cerebral ischemia constitutes the most frequent type of cerebrovascular disease. The reduction of blood supply to the brain initiates the ischemic cascade starting from ionic imbalance to subsequent glutamate excitotoxicity, neuroinflammation and oxidative stress, eventually causing neuronal death. Previously, the authors have demonstrated the in vitro cytoprotective and antioxidant effects of a new arylidene malonate derivative, KM-34, against oxidizing agents like hydrogen peroxide, glutamate or Fe3+/ascorbate. Here, we examined for the first time the neuroprotective effect of KM-34 on ischemia/reperfusion models. In vitro, treatment with 10 and 50 μM KM-34 reduced the cellular death (propidium iodide incorporation) induced by oxygen glucose deprivation (OGD) in rat organotypic hippocampal slices cultures. In vivo, stroke was induced in male Wistar rats through middle cerebral artery occlusion (MCAO), followed by 23 h of reperfusion. KM-34 was orally administered 105 min after MCAO onset. We noticed that 1 mg/kg KM-34 reduced infarct volume and neurological score, and increased the latency to fall in the Hanging Wire test compared to vehicle-treated ischemic animals. While ischemic and sham-operated groups showed similar horizontal locomotor activity, vertical counts decreased after MCAO, suggesting that vertical movements are more sensitive to the ischemic injury. Treatment with KM-34 also alleviated the mitochondrial impairment (ROS generation, swelling and membrane potential dissipation) induced by transient MCAO but not significant alterations were found in oxidative stress parameters. Overall, the study provides preclinical evidences confirming the neuroprotective effects of a novel synthetic molecule and paved the way for future investigations regarding its therapeutic potential against brain ischemia/reperfusion injury.

Keywords

KM-34
Neuroprotection
Middle cerebral artery occlusion
Mitochondrial dysfunction
Oxidative stress
Somatosensory deficit
Hanging wire test
Locomotor activity

Cited by (0)

1

Present address: Cuban Center for Neurosciences (CNEURO), La Habana, 11600, Cuba.