Current Biology
Volume 30, Issue 22, 16 November 2020, Pages 4519-4527.e3
Journal home page for Current Biology

Report
PLK1- and PLK4-Mediated Asymmetric Mitotic Centrosome Size and Positioning in the Early Zebrafish Embryo

https://doi.org/10.1016/j.cub.2020.08.074Get rights and content
Under a Creative Commons license
open access

Highlights

  • Large mitotic centrosome identification (246.44 ± 11.93 μm2) in the zebrafish embryo

  • Decreases in cell size scales closely with mitotic centrosome size

  • Zebrafish mitotic centrosomes within a spindle are asymmetric in size

  • PLK1 and PLK4 activity is required for asymmetric mitotic centrosome positioning

Summary

Factors that regulate mitotic spindle positioning remain unclear within the confines of extremely large embryonic cells, such as the early divisions of the vertebrate embryo, Danio rerio (zebrafish). We find that the mitotic centrosome, a structure that assembles the mitotic spindle [1], is notably large in the zebrafish embryo (246.44 ± 11.93 μm2 in a 126.86 ± 0.35 μm diameter cell) compared to a C. elegans embryo (5.78 ± 0.18 μm2 in a 55.83 ± 1.04 μm diameter cell). During embryonic cell divisions, cell size changes rapidly in both C. elegans and zebrafish [2, 3], where mitotic centrosome area scales more closely with changes in cell size compared to changes in spindle length. Embryonic zebrafish spindles contain asymmetrically sized mitotic centrosomes (2.14 ± 0.13-fold difference between the two), with the larger mitotic centrosome placed toward the embryo center in a polo-like kinase (PLK) 1- and PLK4-dependent manner. We propose a model in which uniquely large zebrafish embryonic centrosomes direct spindle placement within disproportionately large cells.

Keywords

centrosome
spindle
PLK1
PLK4
microtubules
mitosis
PCM
C. elegans
zebrafish
embryo

Cited by (0)

5

Present address: University of Rochester, Department of Biology, 500 Joseph C. Wilson Boulevard, Rochester, NY 14627, USA

6

Present address: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 6707 Democracy Boulevard, Bethesda, MD 20892, USA

7

Twitter: @LovelessRadio

8

Lead Contact