Comptes Rendus
Bounds on the hydrostatic plastic strength of voided polycrystals and implications for linear-comparison homogenization techniques
[Bornes de la résistance plastique hydrostatique des polycrystaux poreux et leurs implications sur des techniques basées sur des milieux linéaires de comparaison]
Comptes Rendus. Mécanique, Volume 342 (2014) no. 1, pp. 25-31.

Une technique dʼhomogénéisation non linéaire et sa version relaxée sont utilisées pour calculer des bornes de types Hashin–Shtrikman et autocohérent pour la resistance hydrostatique de polycristaux poreux parfaitement plastiques. On en dérive des résultats analytiques pour des agrégats isotropes de différentes symétries cubiques (cfc, ccc, ionique). Lʼimpact sur les bornes de la relaxation variationnelle se révèle être beaucoup plus important que celui précédemment observé dans le cas de polycristaux denses, tant et si bien que des bornes relaxées de type autocohérent sʼavèrent être plus faibles que des bornes non relaxées de type Hashin–Shtrikman dans certains systèmes matériels considérés.

A linear-comparison homogenization technique and its relaxed version are used to compute bounds of the Hashin–Shtrikman and the self-consistent types for the hydrostatic strength of ideally plastic voided polycrystals. Closed-form analytical results are derived for isotropic aggregates of various cubic symmetries (fcc, bcc, ionic). The impact of the variational relaxation on the bounds is found to be significantly larger than that previously observed in fully dense polycrystals. So much so that, quite surprisingly, relaxed self-consistent bounds are found to be weaker than non-relaxed Hashin–Shtrikman bounds in some of the material systems considered.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2013.11.002
Keywords: Polycrystals, Plasticity, Homogenization, Bounds
Mot clés : Polycrystaux, Plasticité, Homogenisation, Bornes
Martín I. Idiart 1, 2 ; Juan E. Ramos Nervi 1, 3

1 Departamento de Aeronáutica, Facultad de Ingeniería, Universidad Nacional de La Plata, Avda. 1 esq. 47, La Plata B1900TAG, Argentina
2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, Calle 8 No. 1467, La Plata B1904CMC, Argentina
3 Nucleoeléctrica Argentina S.A., Arribeños 3619, Ciudad Autónoma de Buenos Aires C1429BKQ, Argentina
@article{CRMECA_2014__342_1_25_0,
     author = {Mart{\'\i}n I. Idiart and Juan E. Ramos Nervi},
     title = {Bounds on the hydrostatic plastic strength of voided polycrystals and implications for linear-comparison homogenization techniques},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {25--31},
     publisher = {Elsevier},
     volume = {342},
     number = {1},
     year = {2014},
     doi = {10.1016/j.crme.2013.11.002},
     language = {en},
}
TY  - JOUR
AU  - Martín I. Idiart
AU  - Juan E. Ramos Nervi
TI  - Bounds on the hydrostatic plastic strength of voided polycrystals and implications for linear-comparison homogenization techniques
JO  - Comptes Rendus. Mécanique
PY  - 2014
SP  - 25
EP  - 31
VL  - 342
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2013.11.002
LA  - en
ID  - CRMECA_2014__342_1_25_0
ER  - 
%0 Journal Article
%A Martín I. Idiart
%A Juan E. Ramos Nervi
%T Bounds on the hydrostatic plastic strength of voided polycrystals and implications for linear-comparison homogenization techniques
%J Comptes Rendus. Mécanique
%D 2014
%P 25-31
%V 342
%N 1
%I Elsevier
%R 10.1016/j.crme.2013.11.002
%G en
%F CRMECA_2014__342_1_25_0
Martín I. Idiart; Juan E. Ramos Nervi. Bounds on the hydrostatic plastic strength of voided polycrystals and implications for linear-comparison homogenization techniques. Comptes Rendus. Mécanique, Volume 342 (2014) no. 1, pp. 25-31. doi : 10.1016/j.crme.2013.11.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.11.002/

[1] G.I. Taylor Plastic strain in metals, J. Inst. Met., Volume 62 (1938), pp. 307-324

[2] A. Reuss Calculation of the flow limits of mixed crystals on the basis of the plasticity of the monocrystals, Z. Angew. Math. Mech., Volume 9 (1929), pp. 49-58

[3] R. Dendievel; G. Bonnet; J.R. Willis Bounds for the creep behaviour of polycrystalline materials (G.J. Dvorak, ed.), Inelastic Deformation of Composite Materials, Springer, New York, 1991, pp. 175-192

[4] G. deBotton; P. Ponte Castañeda Variational estimates for the creep behavior of polycrystals, Proc. R. Soc. Lond. A, Volume 448 (1995), pp. 121-142

[5] J.R. Willis Upper and lower bounds for nonlinear composite behavior, Mater. Sci. Eng. A, Volume 175 (1994), pp. 7-14

[6] M.V. Nebozhyn; P. Gilormini; P. Ponte Castañeda Variational self-consistent estimates for viscoplastic polycrystals with highly anisotropic grains, C. R. Acad. Sci. Paris, Ser. IIb, Volume 328 (2000), pp. 11-17

[7] M.V. Nebozhyn; P. Gilormini; P. Ponte Castañeda Variational self-consistent estimates for cubic viscoplastic polycrystals: the effects of grain anisotropy and shape, J. Mech. Phys. Solids, Volume 49 (2001), pp. 313-340

[8] Y. Liu; P. Gilormini; P. Ponte Castañeda Variational self-consistent estimates for texture evolution in viscoplastic polycrystals, Acta Mater., Volume 51 (2003), pp. 5425-5437

[9] Y. Liu; P. Ponte Castañeda Homogenization estimates for the average behavior and field fluctuations in cubic and hexagonal viscoplastic polycrystals, J. Mech. Phys. Solids, Volume 52 (2004), pp. 1175-1211

[10] M.I. Idiart; P. Ponte Castañeda Variational linear comparison bounds for nonlinear composites with anisotropic phases. I. General results, Proc. R. Soc. Lond. A, Volume 463 (2007), pp. 907-924

[11] M.I. Idiart; P. Ponte Castañeda Variational linear comparison bounds for nonlinear composites with anisotropic phases. II. Crystalline materials, Proc. R. Soc. A, Volume 463 (2007), pp. 925-943

[12] M.I. Idiart Bounding the plastic strength of polycrystalline solids by linear-comparison homogenization methods, Proc. R. Soc. Lond. A, Volume 468 (2012), pp. 1136-1153

[13] R.A. Lebensohn; M.I. Idiart; P. Ponte Castañeda; P.-G. Vincent Dilatational viscoplasticity of polycrystalline solids with intergranular cavities, Philos. Mag., Volume 91 (2011), pp. 3038-3067

[14] P. Suquet Analyse limite et homogénéisation, C. R. Acad. Sci. Paris, Ser. II, Volume 296 (1983), pp. 1355-1358

[15] G. Bouchitté; P. Suquet Homogenization, plasticity and yield design (G. Dal Maso; G. DellʼAntonio, eds.), Composite Media and Homogenization Theory, Birkhäuser, Basel, 1991, pp. 107-133

[16] T. Rockafellar, Princeton University Press, Princeton, USA, 1970

[17] J.R. Willis Bounds and self-consistent estimates for the overall moduli of anisotropic composites, J. Mech. Phys. Solids, Volume 25 (1977), pp. 185-202

[18] J.R. Willis Elasticity theory of composites (H.G. Hopkins; M.J. Sewell, eds.), Mechanics of Solids, The Rodney Hill 60th Anniversary Volume, Pergamon Press, 1982, pp. 653-686

[19] L.J. Walpole Elastic behavior of composite materials: theoretical foundations, Adv. Appl. Mech., Volume 21 (2013), pp. 169-242

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A generalized-secant homogenization scheme for viscoplastic polycrystalline solids under imposed deformations

Martín I. Idiart; Pierre-Guy Vincent

C. R. Méca (2015)


A homogenization-based constitutive model for two-dimensional viscoplastic porous media

Kostas Danas; Martin I. Idiart; Pedro Ponte Castañeda

C. R. Méca (2008)


Nonlinear sequential laminates reproducing hollow sphere assemblages

Martín I. Idiart

C. R. Méca (2007)