Comptes Rendus
Electron microscopy / Microscopie électronique
Future directions in high-resolution electron microscopy: Novel optical components and techniques
[L'avenir de la microscopie électronique à haute résolution : Éléments et techniques innovantes]
Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 110-118.

La microscopie à haute résolution est actuellement dominée par les microscopes électroniques équipés de correcteurs d'aberration, mais ces instruments ne sont pas les seuls capables d'atteindre le domaine de la haute résolution. D'autres techniques les concurrencent, notamment la ptychographie et l'utilisation des dispositifs à phase. De plus, l'opération des microscopes corrigés soulève des incertitudes. Notons que les correcteurs peuvent jouer d'autres rôles que la correction, la création de faisceaux vorticiels, par exemple. En conclusion, la correction par miroir électronique est évoquée.

Aberration-corrected electron microscopes currently dominate the high-resolution scene but they are not the only instruments that can provide such information. Other techniques are attracting attention, notably ptychography and the use of phase plates. Moreover, operation of these aberration-corrected microscopes at their ultimate performance raises questions that are still under discussion. We note too that correctors can be useful for tasks other than correction, such as vortex beam creation. To conclude, the specialized role of electron mirrors is recalled.

Publié le :
DOI : 10.1016/j.crhy.2013.11.003
Keywords: Aberration correctors, Noise, Mirrors, Ptychography, Phase plates, Vortex beams
Mot clés : Correcteurs d'aberrations, Bruit, Mirroirs, Ptychographie, Dispositifs à phase, Faisceaux vorticiels
Peter Hawkes 1

1 CEMES–CNRS, BP 94347, 31055 Toulouse cedex, France
@article{CRPHYS_2014__15_2-3_110_0,
     author = {Peter Hawkes},
     title = {Future directions in high-resolution electron microscopy: {Novel} optical components and techniques},
     journal = {Comptes Rendus. Physique},
     pages = {110--118},
     publisher = {Elsevier},
     volume = {15},
     number = {2-3},
     year = {2014},
     doi = {10.1016/j.crhy.2013.11.003},
     language = {en},
}
TY  - JOUR
AU  - Peter Hawkes
TI  - Future directions in high-resolution electron microscopy: Novel optical components and techniques
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 110
EP  - 118
VL  - 15
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.11.003
LA  - en
ID  - CRPHYS_2014__15_2-3_110_0
ER  - 
%0 Journal Article
%A Peter Hawkes
%T Future directions in high-resolution electron microscopy: Novel optical components and techniques
%J Comptes Rendus. Physique
%D 2014
%P 110-118
%V 15
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2013.11.003
%G en
%F CRPHYS_2014__15_2-3_110_0
Peter Hawkes. Future directions in high-resolution electron microscopy: Novel optical components and techniques. Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 110-118. doi : 10.1016/j.crhy.2013.11.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.11.003/

[1] H. Busch Über die Wirkungsweise der Konzentrierungsspule bei der Braunschen Röhre, Arch. Elektrotech., Volume 18 (1927), pp. 583-594

[2] M. Knoll; E. Ruska Beitrag zur geometrischen Elektronenoptik, Ann. Phys. (Leipz.), Volume 12 (1932), pp. 607-640 (and pp. 641–661)

[3] M. Knoll; E. Ruska Das Elektronenmikroskop, Z. Phys., Volume 78 (1932), pp. 318-339

[4] E. Ruska Die frühe Entwicklung der Elektronenlinsen und der Elektronenmikroskopie, Acta Hist. Leopoldina, Volume 12 (1979) (translated into English by T. Mulvey, The Early Development of Electron Lenses and Electron Microscopy, Hirzel, Stuttgart, 1980 and Microscopica Acta, Supplement 5, 1980)

[5] O. Scherzer Über einige Fehler von Elektronenlinsen, Z. Phys., Volume 101 (1936), pp. 593-603

[6] O. Scherzer Sphärische und chromatische Korrektur von Elektronen-Linsen, Optik, Volume 2 (1947), pp. 114-132

[7] P.W. Hawkes The geometrical aberrations of general electron optical systems. I. The conditions imposed by symmetry. II. The primary (third order) aberrations of orthogonal systems, and the secondary (fifth order) aberrations of round systems, Philos. Trans. R. Soc. Lond. A, Volume 257 (1965), pp. 479-552

[8] V.D. Beck A hexapole spherical aberration corrector, Optik, Volume 53 (1979), pp. 241-255

[9] A.V. Crewe Studies on sextupole correctors, Optik, Volume 57 (1980), pp. 313-327

[10] A.V. Crewe The sextupole as corrector, Seventh European Congress on Electron Microscopy Foundation, The Hague (P. Brederoo; G. Boom, eds.) (1980), pp. 36-37

[11] A.V. Crewe; D. Kopf A sextupole system for the correction of spherical aberration, Optik, Volume 55 (1980), pp. 1-10

[12] A.V. Crewe; D. Kopf Limitations of sextupole correctors, Optik, Volume 56 (1980), pp. 391-399

[13] E. Chen; C. Mu New development in correction of spherical aberration of electromagnetic round lens (K. Kuo; T. Yao, eds.), Proc. Int. Symp. Electron Microscopy, World Scientific, Singapore, 1991, pp. 28-35

[14] H. Rose Correction of aperture aberrations in magnetic systems with threefold symmetry, Nucl. Instrum. Methods, Volume 187 (1981), pp. 187-199

[15] H. Rose History of direct aberration correction, Adv. Imaging Electron Phys., Volume 153 (2008), pp. 3-39

[16] D. Gabor A new microscope principle, Nature, Volume 161 (1948), pp. 777-778

[17] S.F. Johnston Holographic Visions, a History of New Science, Oxford University Press, Oxford, 2006

[18] P.W. Hawkes Aberration correction past and present, Philos. Trans. R. Soc. Lond. A, Volume 367 (2009), pp. 3637-3664

[19] O. Krivanek; N. Dellby; A.J. Spence; R.A. Camps; L.M. Brown Aberration correction in the STEM, Cambridge (J.M. Rodenburg, ed.), Institute of Physics, Bristol (1997), pp. 35-39

[20] O. Krivanek; N. Dellby; A.J. Spence; R.A. Camps; L.M. Brown On-line aberration measurement and correction in STEM, Microsc. Microanal., Volume 3 (1997), pp. 1171-1172

[21] O. Krivanek; N. Dellby; A.R. Lupini Towards sub-Å electron beams, Ultramicroscopy, Volume 78 (1999), pp. 1-11

[22] O. Krivanek; N. Dellby; R.J. Keyse; M. Murfitt; C. Own; Z. Szilagyi Advances in aberration-corrected scanning transmission electron microscopy and electron spectroscopy, Adv. Imaging Electron Phys., Volume 153 (2008), pp. 121-160

[23] O.L. Krivanek; N. Dellby; M.F. Murfitt Aberration correction in electron microscopy (J. Orloff, ed.), Handbook of Charged Particle Optics, CRC Press, Boca Raton, 2009, pp. 601-639

[24] M. Haider; S. Uhlemann; E. Schwan; H. Rose; B. Kabius; K. Urban Electron microscopy image enhanced, Nature, Volume 392 (1998), pp. 768-769

[25] M. Haider; H. Rose; S. Uhlemann; B. Kabius; K. Urban Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope, J. Electron Microsc., Volume 47 (1998), pp. 395-405

[26] M. Haider; H. Rose; S. Uhlemann; E. Schwan; B. Kabius; K. Urban A spherical-aberration-corrected 200 kV transmission electron microscope, Ultramicroscopy, Volume 75 (1998), pp. 53-60

[27] M. Haider; H. Müller; S. Uhlemann Present and future hexapole aberration correctors for high resolution electron microscopy, Adv. Imaging Electron Phys., Volume 153 (2008), pp. 43-120

[28] M. Haider; P. Hartel; H. Müller; S. Uhlemann; J. Zach Current and future aberration correctors for the improvement of resolution in electron microscopy, Philos. Trans. R. Soc. Lond. A, Volume 367 (2009), pp. 3665-3682

[29] R. Janzen; S. Burkhardt; P. Fehlner; T. Späth; M. Haider The SPANOCH method: a key to establish aberration correction in miniaturized (multi)column systems? (R. Rachel; J. Schröder; R. Witzgall; J. Zweck, eds.), Proc. MC-2013, vol. 1, 2013, pp. 107-108

[30] S.J. Haigh; A.I. Kirkland Aberration-corrected imaging in CTEM (R. Brydson, ed.), Aberration-Corrected Analytical Transmission Electron Microscopy, Wiley Chichester and RMS, Oxford, 2011, pp. 241-266

[31] P.W. Hawkes Aberrations (J. Orloff, ed.), Handbook of Charged Particle Optics, CRC Press, Boca Raton, 2009, pp. 209-340

[32] R. Janzen; C. Koch; G. Schönhense; A. Parvizi Monochromatizing without filtering using dynamic fields without bunching: a new concept for d-TEM illumination (R. Rachel; J. Schröder; R. Witzgall; J. Zweck, eds.), Proc. MC-2013, vol. 1, 2013, pp. 93-94

[33] P.W. Hawkes; E. Kasper Principles of Electron Optics, Academic Press, London, 1989 and 1994

[34] J. Zach Chromatic correction: a revolution in electron microscopy, Philos. Trans. R. Soc. Lond. A, Volume 367 (2009), pp. 3699-3707

[35] R. Leary; R. Brydson Chromatic aberration correction: the next step in electron microscopy, Adv. Imaging Electron Phys., Volume 165 (2011), pp. 73-130

[36] H. Rose Geometrical Charged-Particle Optics, Springer, Heidelberg, 2012

[37] U.A. Kaiser Low-voltage TEM – current status and future prospects, Manchester (D.J. Stokes; J.L. Hutchison, eds.), Royal Microscopical Society, Oxford (2012), pp. 539-540

[38] U. Dahmen; R. Erni; V. Radmilovic; C. Kisielowski; M.-D. Rossell; P. Denes Background, status and future of the Transmission Electron Aberration-corrected Microscope project, Philos. Trans. R. Soc. Lond. A, Volume 367 (2009), pp. 3795-3808

[39] S.M. Schramm; S.J. van der Molen; R.M. Tromp Intrinsic instability of aberration-corrected electron microcopes, Phys. Rev. Lett., Volume 109 (2012), p. 163901 (5pp)

[40] J. Barthel; A. Thust On the optical stability of high-resolution transmission electron microscopes, Ultramicroscopy, Volume 134 (2013), pp. 6-17

[41] R.M. Tromp; S.M. Schramm Optimization and stability of the contrast transfer function in aberration-corrected electron microscopy, Ultramicroscopy, Volume 125 (2013), pp. 72-80

[42] A.R. Lupini; S.J. Pennycook Tuning fifth-order aberrations in a quadrupole–octupole corrector, Microsc. Microanal., Volume 18 (2012), pp. 699-704

[43] T. Sannomiya; H. Sawada; T. Nakamichi; F. Hosokawa; Y. Nakamura; Y. Tanishiro; K. Takayanagi Determination of aberration center of Ronchigram for automated aberration correction in scanning transmission electron microscopy, Ultramicroscopy, Volume 135 (2013), pp. 71-79

[44] A.R. Lupini The electron ronchigram (S.J. Pennycook; P.D. Nellist, eds.), Scanning Transmission Electron Microscopy, Springer, New York & Heidelberg, 2011, pp. 117-161

[45] S. Uhlemann; H. Müller; P. Hartel; J. Zach; M. Haider Thermal magnetic field noise limits resolution in transmission electron microscopy, Phys. Rev. Lett., Volume 111 (2013), p. 046101

[46] M.J. Fiddy Legacies of the Gerchberg–Saxton algorithm, Ultramicroscopy, Volume 134 (2013), pp. 48-54

[47] J.R. Fienup Phase retrieval algorithms: a personal tour, Appl. Opt., Volume 52 (2013), pp. 45-56

[48] J.M. Rodenburg Ptychography and related diffractive imaging methods, Adv. Imaging Electron Phys., Volume 150 (2008), pp. 87-184

[49] A.M. Maiden; M.J. Humphry; F. Zhang; J.M. Rodenburg Superresolution imaging via ptychography, J. Opt. Soc. Am. A, Volume 28 (2011), pp. 604-612

[50] M.J. Humphry; B. Kraus; A.C. Hurst; A.M. Maiden; J.M. Rodenburg Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging, Nat. Commun., Volume 3 (2012), pp. 730-736

[51] A.M. Maiden; J.M. Rodenburg An improved ptychographical phase retrieval algorithm for diffractive imaging, Ultramicroscopy, Volume 109 (2009), pp. 1256-1262

[52] F. Hüe; J.M. Rodenburg; A.M. Maiden; P.A. Midgley Extended ptychography in the transmission electron microscope: possibilities and limitations, Ultramicroscopy, Volume 111 (2011), pp. 1117-1123

[53] M.J. Humphry; A.M. Maiden; B. Kraus; M.C. Sarahan; J.M. Rodenburg Beyond the magnetic lens: resolution improvement by a factor of five via electron ptychography, Manchester (D.J. Stokes; J.L. Hutchison, eds.), Royal Microscopical Society, Oxford (2012), pp. 523-524

[54] P. Wang; D.J. Batey; J.M. Rodenburg; H. Sawada; A.I. Kirkland Towards sub-Angström ptychographic diffractive imaging, Microsc. Microanal., Volume 19 (2013) no. Suppl. 2, pp. 706-707

[55] A.M. Maiden; M.J. Humphry; J.M. Rodenburg Ptychographic transmission microscopy in three dimensions using a multi-slice approach, J. Opt. Soc. Am. A, Volume 29 (2012), pp. 1606-1614

[56] K.Yu. Bliokh; Y.P. Bliokh; S. Savel'ev; F. Nori Semiclassical dynamics of electron wave-packet states with phase vortices, Phys. Rev. Lett., Volume 99 (2007), p. 190404

[57] M. Uchida; A. Tonomura Generation of electron beams carrying orbital angular momentum, Nature, Volume 464 (2010), pp. 737-739

[58] J. Verbeeck; H. Tian; P. Schattschneider Production and application of electron vortex beams, Nature, Volume 467 (2010), pp. 301-304

[59] B.J. McMorran; A. Agrawal; I.M. Anderson; A.A. Herzing; H.J. Lezec; J.J. McClelland; J. Ungaris Electron vortex beams with high quanta of orbital angular momentum, Science, Volume 331 (2011), pp. 192-195

[60] Linear and Chiral Dichroism in the Electron Microscope (P. Schattschneider, ed.), Pan Stanford, Singapore, 2012

[61] P. Schattschneider; J. Verbeeck Theory of free electron vortices, Ultramicroscopy, Volume 111 (2011), pp. 1461-1468

[62] P. Schattschneider; J. Verbeeck; M. Stöger-Pollach Mode conversion of vortex electrons, Manchester (D.J. Stokes; J.L. Hutchison, eds.), Royal Microscopical Society, Oxford (2012), pp. 431-432

[63] L. Clark; A. Béché; G. Guzzinati; A. Lubk; M. Mazilu; R. Van Boxem; J. Verbeeck Exploiting lens aberrations to create electron vortex beams, Phys. Rev. Lett., Volume 111 (2013), p. 064801

[64] J. Verbeeck; H. Tian; A. Béché A new way of producing electron vortex probes for STEM, Ultramicroscopy, Volume 113 (2012), pp. 83-87

[65] P. Schattschneider; S. Löffler; M. Stöger-Pollach; J. Verbeeck Is magnetic chiral dichroism feasible with electron vortices?, Ultramicroscopy, Volume 136 (2014), pp. 81-85

[66] P. Schattschneider; M. Stöger-Pollach; J. Verbeeck Novel vortex generator and mode converter for electron beams, Phys. Rev. Lett., Volume 109 (2012), p. 084801 (5 pages)

[67] A.M. Blackburn; J.C. Loudon Vortex beam production and contrast enhancement from a magnetic spiral phase plate, Ultramicroscopy, Volume 136 (2014), pp. 127-143

[68] T. Niermann; J. Verbeeck; M. Lehmann Creating arrays of electron vortices, Ultramicroscopy, Volume 136 (2014), pp. 165-170

[69] R. Herring; B. McMorran Electron vortex beams, Adv. Imaging Electron Phys. (2014) (forthcoming)

[70] H. Boersch Über die Kontraste von Atomen im Elektronenmikroskop, Z. Naturforsch., Volume 2a (1947), pp. 615-633

[71] K. Schultheiss; J. Zach; B. Gamm; M. Dries; N. Frindt; R.R. Schröder; D. Gerthsen New electrostatic phase plate for phase-contrast transmission electron microscopy and its application for wave-function reconstruction, Microsc. Microanal., Volume 16 (2010), pp. 785-794

[72] C.J. Edgcombe The positioning of thin-film magnetic rings as phase plates for transmission electron microscopy, Manchester (D.J. Stokes; J.L. Hutchison, eds.), Royal Microscopical Society, Oxford (2012), pp. 489-490

[73] C.J. Edgcombe; J.C. Loudon Use of Aharonov–Bohm effect and chirality control in magnetic phase plates for transmission microscopy, J. Phys. Conf. Ser., Volume 371 (2012), p. 012006

[74] C.J. Edgcombe; A. Ionescu; J.C. Loudon; A.M. Blackburn; H. Kurebayashi; C.H.W. Barnes Characterisation of ferromagnetic rings for Zernike phase plates using the Aharonov–Bohm effect, Ultramicroscopy, Volume 120 (2012), pp. 78-85

[75] S. Hettler; J. Wagner; M. Dries; N. Frindt; R.R. Schröder; D. Gerthsen Electrostatic Zach phase plates for transmission electron microscopy (R. Rachel; J. Schröder; R. Witzgall; J. Zweck, eds.), Proc. MC-2013, vol. 1, 2013, pp. 95-96

[76] D. Willasch Versuche zur Kontrastverbesserung in der Elektronenmikroscopie durch Hellfeldabbildung mittels Phasenplatten und Dunkelfeldabbildung bei hohlkegelförmiger Beleuchtung, 1973 (Dissertation, Tübingen)

[77] D. Willasch High resolution electron microscopy with profiled phase plates, Optik, Volume 44 (1975), pp. 17-36

[78] R. Danev; K. Nagayama Transmission electron microscope with Zernike phase plate, Ultramicroscopy, Volume 88 (2001), pp. 243-252

[79] K. Nagayama Phase contrast enhancement with phase plates in electron microscopy, Adv. Imaging Electron Phys., Volume 138 (2005), pp. 69-146

[80] R. Danev; R.M. Glaeser; K. Nagayama Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy, Ultramicroscopy, Volume 109 (2009), pp. 312-325

[81] D. Typke Zernike phase contrast electron microscopy with a spherically corrected foil lens, Microsc. Microanal., Volume 16 (2010), pp. 441-444

[82] M. Dries; K. Schultheiss; B. Gamm; A. Rosenauer; R.R. Schröder; D. Gerthsen Object-wave reconstruction by carbon film-based Zernike- and Hilbert-phase plate microscopy: a theoretical study not restricted to weak-phase objects, Ultramicroscopy, Volume 111 (2011), pp. 159-168

[83] M. Beleggia; M. Malac; R.F. Egerton; M. Kawasaki Imaging with a hole-free phase plate, Manchester (D.J. Stokes; J.L. Hutchison, eds.), Royal Microscopical Society, Oxford (2012), pp. 499-500

[84] W.O. Saxton Computer techniques for image processing in electron microscopy, Adv. Electron. Electron. Phys., Volume 10 (1978) (Suppl.)

[85] D.L. Misell The phase problem in electron microscopy, Adv. Opt. Electron. Microsc., Volume 7 (1978), pp. 185-279

[86] B. Gamm; M. Dries; K. Schultheiss; H. Blank; A. Rosenauer; R.R. Schröder; D. Gerthsen Object wave reconstruction by phase-plate transmission electron microscopy, Ultramicroscopy, Volume 110 (2010), pp. 807-814

[87] M. Dries; B. Gamm; S. Hettler; E. Müller; W. Send; D. Gerthsen; A. Rosenauer A nanocrystalline Hilbert-phase plate for phase-contrast transmission electron microscopy of amorphous objects, Manchester (D.J. Stokes; J.L. Hutchison, eds.), Royal Microscopical Society, Oxford (2012), pp. 399-400

[88] R.M. Glaeser; S. Sassolini; R. Cambie; J. Jin; S. Cabrini; A. Schmid; R. Danev; B. Buijsse; R. Csencsits; K.H. Downing; D.M. Larson; D. Typke; B.G. Han Minimizing electrostatic charging of an aperture used to produce in-focus contrast in the TEM, Ultramicroscopy, Volume 135 (2013), pp. 6-15

[89] R. Danev; K. Nagayama Optimizing the phase shift and the cut-on periodicity of phase plates for TEM, Ultramicroscopy, Volume 111 (2011), pp. 1305-1315

[90] B. Buijsse; F.M.H.M. van Laarhoven; A.K. Schmid; R. Cambie; S. Cabrini; J. Jin; R.M. Glaeser Design of a hybrid double-sideband/single-sideband (schlieren) objective aperture suitable for electron microscopy, Ultramicroscopy, Volume 111 (2011), pp. 1688-1695

[91] N. Frindt; M. Oster; S. Hettler; B. Gamm; L. Dieterle; W. Kowalski; D. Gerthsen; R. Schröder In-focus electrostatic Zach phase plate imaging for transmission electron microscopy with tunable phase-contrast of frozen hydrated biological samples, Microsc. Microanal. (2013) (in press)

[92] H. Müller; J. Jin; R. Danev; J. Spence; H. Padmore; R.M. Glaeser Design of an electron microscope phase plate using a focused continuous-wave laser, New J. Phys., Volume 12 (2010), p. 073011 (10 pages)

[93] V.K. Zworykin; G.A, Morton; E.G. Ramberg; J. Hillier; A.W. Vance Electron Optics and the Electron Microscope, Wiley, New York & Chapman & Hall, London, 1945

[94] E.M. Yakushev; L.M. Sekunova Theory of electron mirrors and cathode lenses, Adv. Electron. Electron. Phys., Volume 68 (1986), pp. 337-416

[95] E.M. Yakushev Theory and computation of electron mirrors: the central particle method, Adv. Imaging Electron Phys., Volume 178 (2013), pp. 147-247

[96] G.F. Rempfer A theoretical study of the hyperbolic electron mirror as a correcting element for spherical and chromatic aberration in electron optics, J. Appl. Phys., Volume 67 (1990), pp. 6027-6040

[97] G.F. Rempfer; D.M. Desloge; W.P. Skoczylas; O.H. Griffith Simultaneous correction of spherical and chromatic aberrations with an electron mirror, Microsc. Microanal., Volume 3 (1997), pp. 14-27

[98] R. Könenkamp; T. Jones; J. Elstner; R. Word; G.F. Rempfer; T. Dixon; L. Almaraz; W.P. Skoczylas Image properties in an aberration-corrected photoemission electron microscope, Phys. Proc., Volume 1 (2008), pp. 505-511

[99] H. Rose High-resolution LEEM/PEEM by employing mirror-type aberration correctors – in memory of Gertrude F. Rempfer, Microsc. Microanal., Volume 19 (2013), pp. 302-303 (Suppl. 2)

[100] A.V. Crewe; S. Ruan; P. Korda; F.C. Tsai Studies of a magnetically focused electrostatic mirror. I. Experimental test of the first order properties, J. Microsc., Volume 197 (2000), pp. 110-117

[101] F.C. Tsai Studies of a magnetically focused electrostatic mirror. II. Aberration corrections, J. Microsc., Volume 197 (2000), pp. 118-135

[102] Z. Shao; X.D. Wu Properties of a four-electrode adjustable electron mirror as an aberration corrector, Rev. Sci. Instrum., Volume 61 (1990), pp. 1230-1235

[103] P. Hartel; D. Preikszas; R. Spehr; H. Müller; H. Rose Mirror corrector for low-voltage electron microscopes, Adv. Imaging Electron Phys., Volume 120 (2002), pp. 41-133

[104] R.M. Tromp; J.B. Hannon; A.W. Ellis; W. Wan; A. Berghaus; O. Schaff A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design, Ultramicroscopy, Volume 110 (2010), pp. 852-861

[105] R.M. Tromp; J.B. Hannon; W. Wan; A. Berghaus; O. Schaff A new aberration-corrected, energy-filtered LEEM/PEEM instrument. II. Operation and results, Ultramicroscopy, Volume 127 (2013), pp. 25-39

[106] M. Mankos; K. Shadman; A.T. N'Diaye; A.K. Schmid; H.J. Persson; R.W. Davis Progress towards an aberration-corrected low energy electron microscope for DNA sequencing and surface analysis, J. Vac. Sci. Technol. B, Volume 30 (2012), p. 06F02

[107] M. Mankos; K. Shadman A monochromatic, aberration-corrected, dual-beam low energy electron microscope, Ultramicroscopy, Volume 130 (2013), pp. 13-28

[108] J.P.S. Fitzgerald; R.C. Word; R. Könenkamp Adaptive aberration correction using a triode hyperbolic electron mirror, Ultramicroscopy, Volume 111 (2011), pp. 1495-1503

[109] J.P.S. Fitzgerald; R.C. Word; R. Könenkamp Simultaneous and independent adaptive correction of spherical and chromatic aberration using an electron mirror and lens combination, Ultramicroscopy, Volume 115 (2012), pp. 35-40

[110] R. Schröder; B. Barton; H. Rose; G. Benner Contrast enhancement by anamorphotic phase plates in an aberration-corrected TEM, Microsc. Microanal., Volume 13 (2013) no. Suppl. 3, pp. 8-9

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Seeing and measuring with electrons: Transmission electron microscopy today and tomorrow – An introduction

Christian Colliex

C. R. Phys (2014)


Networking strategies of the microscopy community for improved utilization of advanced instruments: (2) The national network for transmission electron microscopy and atom probe studies in France (METSA)

Thierry Épicier; Étienne Snoeck

C. R. Phys (2014)


Using electron beams to investigate carbonaceous materials

Clemens Mangler; Jannik C. Meyer

C. R. Phys (2014)