Cell Metabolism
Volume 21, Issue 5, 5 May 2015, Pages 756-763
Journal home page for Cell Metabolism

Short Article
Mic10 Oligomerizes to Bend Mitochondrial Inner Membranes at Cristae Junctions

https://doi.org/10.1016/j.cmet.2015.04.006Get rights and content
Under an Elsevier user license
open archive

Highlights

  • MICOS core subunit Mic10 induces high degrees of curvature in model membranes

  • Mic10 forms homo-oligomers via two glycine-rich motifs

  • Oligomerization of Mic10 is a prerequisite for membrane bending

  • Membrane bending by Mic10 is necessary for cristae junction formation in mitochondria

Summary

The mitochondrial inner membrane is highly folded and displays a complex molecular architecture. Cristae junctions are highly curved tubular openings that separate cristae membrane invaginations from the surrounding boundary membrane. Despite their central role in many vital cellular processes like apoptosis, the details of cristae junction formation remain elusive. Here we identify Mic10, a core subunit of the recently discovered MICOS complex, as an inner mitochondrial membrane protein with the ability to change membrane morphology in vitro and in vivo. We show that Mic10 spans the inner membrane in a hairpin topology and that its ability to sculpt membranes depends on oligomerization through a glycine-rich motif. Oligomerization mutants fail to induce curvature in model membranes, and when expressed in yeast, mitochondria display an altered inner membrane architecture characterized by drastically decreased numbers of cristae junctions. Thus, we demonstrate that membrane sculpting by Mic10 is essential for cristae junction formation.

Cited by (0)